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Abstract: The energy transition through increased electrification has put 
the world’s attention on critical mineral exploration. Despite the promise 
of a growing demand, the global exploration industry is a money-losing 
enterprise. Even with increased investments, a decrease in new discoveries 
has taken place over the last two decades. In the paper, I propose a solution 
to this problem where AI is implemented as the enabler of a rigorous sci-
entific method for mineral exploration that aims to reduce cognitive bias 
& false positives, enhances the role of domain experts, and drive down the 
cost of exploration. The current organization of exploration activities in-
volving many fields of science (geology, geochemistry, geophysics) is no 
longer effective in discovering deposits under cover. In particular, the cur-
rent approach fails to adequately quantify uncertainty, leading to sub-
optimal decision-making and $ spent on drilling that often result in false 
positives. Instead, I propose a new scientific method that is based on a 
philosophical approach founded on the principles of Bayesianism and fal-
sification. In this approach, data acquisition is, in the first place, seen as a 
means to falsify human-generated hypotheses. The decision of what data 
to acquire next is quantified with verifiable metrics and based on rational 
decision-making. A practical protocol is provided that can be used as a 
template in any exploration campaign. However, in order to make this pro-
tocol practical, various forms of artificial intelligence are needed. I will 
argue that the most important forms are 1) novel unsupervised learning 
methods that collaborate with domain experts to better understand data and 
generate multiple competing geological hypotheses, and 2) human-in-the-
loop AI algorithms that can optimally plan various geological, geophysi-
cal, geochemical, and drilling data acquisition, where uncertainty 
reduction of geological hypotheses precedes the uncertainty reduction on 
grade and tonnage. The approach will be illustrated using several ongoing 
exploration cases. 

 Keywords: Critical minerals; mineral exploration; artificial intelligence; 
sustainability; education 

1. Introduction 

The purpose of this paper is to provide a forward-
looking essay on the use of AI in critical mineral explora-
tion. This is a personal perspective. The writing is 
subjective and contains personal opinions and observa-
tions, but these are sourced from three decades of unique 
experience in the use of data science, decision science, and 
AI in the context of Earth resources exploration and de-
velopment (Caers et al., 2026; Caers and Journel, 1998; 
Caers and Ma, 2002). In the oil & gas industry, it has long 
been recognized that imposing geological realism is es-
sential to accurately predict fluid flow in porous media. 

Machine learning and deep learning methods are now 
standard in generating reservoir models whose spatial var-
iability is trained on realistic examples such as those 
obtained from outcrop data or from physical models of 
deposition (He et al., 2022; Kani and Elsheikh, 2018; 
Laloy et al., 2018, 2017; Lewis and Vigh, 2017; Liu et al., 
2021; Nasir and Durlofsky, 2023, to list a few). Secondly, 
various diverse sources of information, such as from 
wells, seismic, and production data, need to be integrated 
into an ensemble of models (Ringrose and Bentley, 2015; 
Scheidt et al., 2018) and allow for effective decision mak-
ing on field development scenarios (e.g., location of 
injection & producing wells). A key issue that is addressed 
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in reservoir modeling is that the different scale of infor-
mation of these various sources needs to be carefully 
accounted for; for example, the volume of a core in a bore-
hole differs significantly from the scale of investigation of 
an seismic amplitude signal at thousands of feet in the sub-
surface. This scale issue will be covered at length in this 
paper because it equally applies to mineral exploration.  

Today, one can hardly imagine oil & gas reservoir ex-
ploration and engineering not using various forms of AI, 
whether it is machine learning, reinforcement learning or 
AI-based decision making. While oil/gas development 
based on AI, uncertainty quantification, and Bayesian phi-
losophy (Caers, 2018) accelerated in the 21st century, its 
use in exploration, mining, and processing remains spo-
radic and anecdotal. Even though sophisticated 
methodologies have been developed (Rossi and Deutsch, 
2014), they are not broadly applied and JORC reports still 
produce inverse distance weighting for resource estima-
tion (JORC, 2024). At the same time, the ROI (return on 
investment) in exploration over the last few decades has 
become largely negative (Schodde, 2017) (except for cer-
tain commodities such as gold) and remain well below the 
oil & gas industry. While oil/gas companies wouldn’t 
dream of building a large offshore platform without quan-
tifying geological uncertainty, and thereby risk, most 
mines today are still developed using deterministic mod-
els. In exploration, deterministic modeling and inversion 
of multi-physics data is still the norm. Knowledge about 
the advances that happened regarding quantitative risk as-
sessment in the oil/gas industry appears absent in the 
minerals industry. 

However, things are changing rapidly: over the past 
decade, the global mining industry is now finding itself at 
the nucleus of the energy transition, with the demand for 
critical minerals likely increasing, as well as the corre-
sponding geopolitical, social & environmental aspects. 
This is now generating the formation of new types of com-
panies, often backed by venture capital, who are seeking 
to disrupt the mining industry, as they already have in 
healthcare, renewable energy and climate technology. A 
new wave of digital technology is emerging that may 
change the current economic, educational, social & indus-
trial systems as we know them through the use of large 
language models. Whether this actually will have the im-
pact it promises still remains to be seen, but the fear of 
missing out (FOMO) is ubiquitous. I believe that for the 
mining industry, no fear is warranted, just opportunity in 
the use of quantitative methods such as artificial intelli-
gence. This paper looks at where those opportunities lie 
and how AI may contribute. 

This text does not focus on listing possible applica-
tions of AI to exploration, nor does it write an exhaustive 
review paper, as these already exist (Lindi et al., 2024; 
Yang et al., 2024). Instead, I will view AI through the lens 
of better decision-making founded on a new scientific 
method. In part I of this paper, I will lay down the key 
decision questions that need to be made in exploration and 
how developing a scientific method to exploration will 
make the endeavor more efficient. Indeed, today, in min-
eral exploration, no agreed-upon scientific method exists. 
What exists is a set of tasks executed by domain experts, 
each with their own scientific method agreed upon as a 

paradigm within their own fields. I believe that a broader 
scientific method for the mineral exploration endeavor is 
largely lacking, and I plan to argue that this is one of the 
most important issues in making exploration more effi-
cient, meaning less costs to make a discovery. In Part II, I 
will then review the current most common applications of 
AI for exploration and point out common errors. Then, in 
Part III, I will conjecture what the most likely evolution of 
AI is in exploration, again through the lens of decision-
making. 

2. Part I: A new scientific method 

2.1. What decisions need to be made in exploration? 

The ultimate goal of exploration is to make a new dis-
covery. Discoveries can be made near known deposits 
(brownfield exploration) or in an unexplored area (green-
field exploration). In the next decade or so, we are likely 
to see more brownfield discoveries than greenfield ones. 
Exploration can be seen as an exercise in reducing the 
scale of investigation by reducing uncertainty in 
knowledge of the existence of economic deposits. Explo-
ration often starts at the continental scale, looking for 
example at large igneous provinces that may have the fa-
vorable tectonic setting where magma (source) can rise to 
the surface crust (pathway), then get trapped by physical 
means and chemical precipitation in large and shallow 
enough concentrations to be economical. At the larger 
scales, geologists are guided by geological mapping and 
airborne geophysical data. Anomalies detected on air-
borne multi-physics surveys are identified (possible by 
comparison with those of known deposits) to reduce the 
scale of exploration on the ground by more detailed geo-
logical field work, ground geophysical surveys, and 
geochemical assaying of soils. The next steps are by far 
the costliest: drilling to confirm or falsify hypothesis of a 
promising geometries/lithologies (e.g., intrusions) and 
mineralization. In an ideal setting, such decisions are 
made rationally using decision science (Howard, 1968), 
uncertainty quantification (Scheidt et al., 2018) and under-
standing the value of information (Eidsvik et al., 2015) to 
minimize cost by optimally quantifying uncertainty rela-
tive to some economic threshold or other property of 
interest. Various data sources create an understanding of 
how the mineral system was developed. Data is used to 
make predictions for regions/zones/location of interest. 
Data may not just be acquired to directly detect minerali-
zation but to test geological hypotheses or reduce 
uncertainty on orebody geometry. Not only are various de-
cisions made, but the objective (reward in AI) of the 
decision changes during the exploration project. 

By decisions, we mean the irrevocable allocations of 
resources ($ amounts), not just mental constructs. Obvi-
ously, in exploration, one of the main decisions is: what 
data should we acquire next, or should we walk away from 
the current project. In Part III, I will argue that such ra-
tional decision making is largely absent for reasons that 
have nothing to do with science, instead, with the way the 
exploration industry is currently organized.  

To illustrate the need for a scientific method, I will 
cover one particular exploration activity: exploration un-
der cover. 
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2.2. A typical approach to exploration under cover 

The world has seen a decline in new (greenfield) dis-
coveries over the last decade. Not because of a lack of 
investments, in fact, they went up in $ values (Schodde, 
2017), but because many outcropping deposits have been 
found. Exploration now needs to go under cover. This 
means that indirect observations, such as geophysical & 
geochemical anomalies, become increasingly important. 
A direct observation consists of an observation of miner-
alization at the surface during geological field work, or 
during drilling. Here, we discuss a hypothetical case 
where drilling has not been done, and hence, in a promis-
ing case, needs to be planned. Here would be a common 
approach today 

 Deterministic inversion of gravity, magnetics, 
and EM into 3D subsurface models of density, 
magnetic susceptibility, and conductivity. 

 Interpretation of the 3D property variation into 
features/zones of interest (e.g. and intrusion, an 
alteration, a lithology, a fault). 

 Possible follow-up with additional surveys now 
on the surface of the Earth, then possible re-in-
terpretation of features of interest. 

 An expert-guided decision on drilling, informed 
by the deterministically interpreted anomaly, of-
ten with the goal to maximize intersection. 

While this approach appears logical and certainly has 
led to successes, my observation in working with compa-
nies is that in many cases nothing of interest (and rarely 
reported to the public) is intersected when drilling. In 
other words, a false positive is observed and worse: the 
reason why is not understood or evaluated, one simply 
moves on to the next anomaly. Why is this the case? 

The largest problem is determinism. A single geo-
physical inversion is given a single geological 
interpretation. Uncertainty at every step of this process is 
ignored. 

In the next section, we will take a very different ap-
proach, where the following changes are made 

 Deterministic inversion becomes stochastic in-
version. 

 Interpretation includes a falsification step to 
eliminate wrong modeling assumptions because 
they may induce false positives. 

 Geological realism is included right from the 
start, not after inversion. We invert for geology, 
without vague (non-geological) regularization 
terms that are typically used in deterministic in-
version.  

 We propose drilling plans as a collaboration be-
tween experts and metrics of uncertainty 
quantification. 

 We plan drilling with a given objective in mind 
(maximal intersection, volume of the intrusion) 
and do such planning based on quantitative met-
rics of optimality for the proposed drilling plan. 

These changes are not just random choices, they are 
motivated by a purposeful way of thinking about data, 
models, objectives, and decisions that emanate from a 
long history of scientific approaches. In the next section, 
we will emphasize this through a philosophy of science 
reasoning, in particular focus on two major philosophies: 
Falsification & Bayesianism. 

2.3. A scientific method for mineral exploration 

2.3.1. The scientific method 

Humans do science, but also study how science is 
done. This raises philosophical concepts that question 
how science should be done. What is a good scientific 
method? The practice of science has evolved over human 
history, starting from empiricism to questions that involve 
the relationship between models and data. It also consid-
ers how humans organize to do science, because various 
types of social interactions define what standards and 
norms are, even if they may later be proven incorrect. In-
siders often don’t see faults or epistemic errors, because 
the community has accepted them as standards. Scientists 
may be overly optimistic about what they know (Bond et 
al., 2007). Thomas Kuhn, in particular, studied these or-
ganizations and called them “paradigms”. He sees 
paradigms as consisting of certain (theoretical) assump-
tions, laws, methodologies, and applications adapted by 
members of a scientific community (e.g., evolution, plate 
tectonics, genetics, theory of general relativity). For ex-
ample, probabilistic methods can be seen as such a 
paradigm: they rely on axioms of probability and the def-
inition of a conditional probability, maximum entropy, the 
principle of indifference, Monte Carlo simulations, and so 
on. Researchers within this paradigm do not question the 
fundamentals of this paradigm. Activities within the para-
digm are then puzzle-solving activities (e.g., interpreting 
faults on a seismic survey) governed by the rules of the 
paradigm. But often unresolved issues fester under the 
surface. People who question paradigms are often consid-
ered crazy, ignored, and ostracized from the community. 
Many such examples in human history. Some end up win-
ning Nobel prizes (a recent example is Katalin Karikó, 
Nobel Prize in Medicine, 2023, who was shunned, ig-
nored, belittled, and "not of faculty quality" at the 
University of Pennsylvania even when her groundbreak-
ing Nobel Prize work was already established).  

When it comes to mineral exploration, there does not 
seem to be any clearly defined scientific method. What 
does exist are individual fields of science, such as eco-
nomic geology, geochemistry, and geophysics, each with 
their own organization of puzzle-solving activities. While 
each component is essential, the question begs if the ab-
sence of an overarching scientific method in exploration 
leads to sub-optimal outcomes.  

2.3.2. The Bayesian philosophy 

While Bayes’ rule has been around for more than 250 
years, the Bayesian approach is only a recent trend in de-
fining a new scientific method. What sets Bayesian 
probability from “regular” probability (in the notion of 
Pascal) is the use of prior information. Bayes’ came up 
with a problem of gambling where the odds of winning 
itself were uncertain (certainly true in exploration). There 
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was no true 𝑝, the probability of winning. Previous scien-
tists, such as Pascal, had tried to solve such problems 
using a classical probability approach, such as maximum 
likelihood estimation of 𝑝, which relied on defining how 
likely a dataset would be, if we were to know the truth. 
However, Pascal’s answer to such a problem was shown 
to be biased by Bayes’. Even though we do not know a 
true 𝑝, we can conjecture on the plausibility of possible 
values. This idea is captured quantitatively in the notion 
of a prior probability model on the parameter 𝑝 of a gam-
ble. For an unknown chance of success, we may then 
assume it is between 0 and 1, and we could assume a uni-
form distribution. Why uniform? That’s the subjectivity of 
the prior, but is better than assuming one should simply 
estimate a single 𝑝. Accepting the notion of prior uncer-
tainty is counter-intuitive, yet essential to quantify 
uncertainty and thereby making optimal decision. Tversky 
& Kahneman demonstrated through experiments that hu-
mans ignore Bayes’ and they ended up winning the Nobel 
Prize for economics in 1973. Yet, my own experience in 
working with those who do mineral exploration is the 
avoidance of a priori exactly because it is considered too 
subjective. They reason that assuming there is only a sin-
gle true 𝑝  is considered not subjective! This serious 

contradiction has hampered the rigorous development of 
a scientific method for mineral exploration. 

Bayes’ rule essentially comes down to stating that in 
order to make predictions with models and data, we need 
to know two elements: 1) how likely the new data is as-
suming a given truth, and 2) how likely some truth is 
before acquiring the new data. Traditional statistical ap-
proaches, such as deterministic inversion only use the first 
(likelihood).  

Let’s consider the problem described in Fig. 1, where 
we have a time-domain EM survey and would like to de-
termine electrical properties in the subsurface. The 
transmitter is a large current loop transmitting an EM sig-
nal into the Earth, and 19 receivers record the vertical 
component of the secondary magnetic field, produced by 
a conductivity anomaly underground, over 12 time chan-
nels along a survey line. Only one time channel is shown 
with a clear anomaly at stations 11-14. The surface topog-
raphy is mostly flat, and the subsurface is discretized into 
45×20×45 cells in X, Y, and Z directions, extending 
4000m, 2000m, and 4000m in these directions. The depth 
of discretization is determined by the diffusion distance 
corresponding to the last time channel. 
 

 

Fig. 1. (left) layout of the surface EM survey, with one loop and 19 stations (receivers), (right) one of 16 time channels. 
The inversion uses all time channels. (courtesy of Zhuo Liu, Stanford University) 

The traditional approach is to perform a deterministic 
inversion, then use that to make a deterministic interpre-
tation, which is shown in Fig. 2. Then an expert geologist 
will interpret the deterministic inversion in terms of 
shapes, such as intrusions relevant to exploration. Inter-
pretations of the geometry are done in software that 
focuses on a single deterministic model. 

With this approach, geophysical inversion happens 
before geological interpretation. Again, one may argue 
that the regularization terms help impose geological 
knowledge, but this is too vague and very limited. In a way 

the current approach causes a double dip of the same geo-
logical knowledge: first, we have to impose it in the 
regularization term, then we impose it once more in the 
interpretation. It becomes a self-fulfilling prophecy and 
fraud with circular reasoning.  In Bayes’ both come to-
gether and are solved as a single problem. Bayes’ requires 
one to state plausible solutions (geometries) before doing 
any inversion. 
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Fig. 2. deterministic vs stochastic information. (courtesy of Zhuo Liu, Stanford University). In deterministic inversion, 
one first inverts the data, then makes a geological interpretation (dotted line). (bottom) are shown four stochastic inver-
sion all matching the same data (blue lines in top left figure) compared to deterministic inversion (single red line). On 
the four realizations the same deterministic interpretation is overlayed to show that the clearly shaped intrusion may be 
very different in reality.

Bayesian inversion offers relatively simple solutions 
to the problem, which can be coded up surprisingly easily 
and are general as well. Let’s revisit the case in Fig. 2 and 
discuss how a prior probability model can be designed. We 
start with the following question: what is the minimum 
amount of information we have about the subsurface 

before acquiring any data? First, we have previously ob-
served that petrophysical properties have certain ranges, 
and if we know what lithologies we are dealing with, we 
could possibly even get more specific about these ranges. 
Secondly, we know the spatial variation of these proper-
ties is not random, nor constant over very large areas. 
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Indeed, we know that the formation of deposits has very 
specific variations of these properties. Conceptually, the 
minimum information is constraints on histograms and the 
presence of spatial correlation. Mathematically, we can 
translate the latter into a spatial covariance model (in ge-
ostatistics: variogram), but we are uncertain about the 
parameters of this variogram, such as the mean, ranges, 
and anisotropy, in fact, they could be pretty much anything 
(except random!). What we have established is a hierar-
chical way of thinking as follows: 

 Conceptual idea → high-level mathematical as-
sumptions → detailed mathematical assumptions  

which for this case becomes: 

 The idea of spatial correlation → spatial covari-
ance → parameters of the spatial covariance 

Fig. 2 now shows that one can generate multiple sto-
chastic inversions, all matching the data equally well as 
the deterministic inversion, but the spatial variability 
(variogram) is different for each inversion. Overlaying the 
deterministically interpreted intrusion, we notice that in-
trusions may be present in many different shapes, sizes, 
and orientations, all very different from the single inter-
pretation. 

This type of approach can be used in any setting: ge-
ologists describe conceptual models (the diagrams found 
in papers/reports), mathematicians turn these into con-
straints on the prior probability model, geophysicists use 
this prior to perform Bayesian inversion.  

Fig. 3 shows an actual case study where this is applied 
(Wei et al., 2025). The case concerns a well-studied intru-
sion (O’brian, 2018), the Crystal Lake Gabbro (CLG), a 
mineralized mafic intrusion located along the western 
shore of Lake Superior and about 7 km north of the USA-
Canada. Decision need to be made on where and how to 
drill boreholes to further delineate the intrusion. Decision-
making under uncertainty requires quantifying the uncer-
tainty of the location and shape of the intrusion. However, 
uncertainty exists in the style of the intrusion, which can 
be compared to known classes of intrusions (Barnes et al., 
2016). One hypothesis is that of Nebo-Babel type mag-
matic Ni-Cu sulfide mineralization; another possibility 
offered is the Eagle-Kalatongke type mineralization, 
which presents a funnel shape. These shapes can be repre-
sented using simplified mathematical models, of which 
then many realizations can be generated. The set of reali-
zations constitutes a quantification of uncertainty on the 
shape. These realizations are a direct input to AI-based de-
cision making as will be discussed in Part III. 

 

Fig. 3. several geological concepts are hypothesized on the geometry of magmatic intrusion containing massive sulfides 
based on studies of intrusions worldwide, here we show two such concepts. When applied to the actual CLG case, these 
concepts have to be turned into mathematical models, which are often simplifications of the actual intrusion. Using this 
model, multiple realizations can be generated (possibly constrained to existing borehole data), explicitly representing 
uncertainty in the intrusion shape. Models are in 3D, but only a vertical cross-section is shown (Wei et al., 2025). 

There is a snag in this framework: how do we know 
that the hypothesized conceptual idea, and resulting math-
ematical model, is not conflicting with the geophysical 
data or any other data? After all, the initial conceptual idea 
may be completely incorrect, or the mathematical model 
oversimplified. This type of problem is an example of a 
wider problem of science: how do we prove that the as-
sumptions we make are correct? It is the Austrian 

philosopher Karl Popper who spent a lifetime analyzing 
philosophical questions like these. 

2.3.3. Karl Popper: Falsification 

Popper thought that science should not involve induc-
tion (theories derived from observations). Instead, 
theories are seen as speculative or tentative, as created by 
the human intellect, usually to overcome limitations of 
previous theories. Once stated, such theories need to be 
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tested rigorously with observations. Theories that are in-
consistent with such observation should be rejected 
(falsified). The theories that survive are the best current 
theories.  

In terms of UQ, one can then see models not as true 
representations of actual reality but as hypotheses. One 
has as many hypotheses as models. Such a hypothesis can 
be constrained by previous knowledge, but real field data 
should not be used only to match models (confirmation 
with data) but to falsify a model hypothesis (reject, the 
model does not conform with data). 

Popper offers a way to address (but not fully solve) 
the subjectivity of Bayesian reasoning, which is a form of 
inductive reasoning, as opposed to the deductive form of 
falsification. If the prior distribution cannot predict the 
current data (up to data error), then the Bayesian prior is 
falsified. It basically means that no matter how many 
models one samples from the prior, each model conflict 
the data. While Popper’s falsification may render the prior 
less subjective (than before testing), he does not offer a 
way to revise the prior that will still be up to human sub-
jectivity. 

2.3.4. Moving forward with a new scientific method 

A scientific method for mineral exploration can be 
built based on Bayes’ and Popper, let’s term it a Popper-
Bayes approach. In such a scientific method, a certain par-
adigm/protocol can be followed: 

 Domain scientists generate conceptual model hy-
potheses by interpreting existing data. These are 
high-level hypotheses, conveyed descriptively 

 Experts in numerical modeling turn such high-
level hypotheses into a numerical representation 
that at the highest level has many quantitative hy-
potheses translated from the conceptual 
hypothesis but also implement details through 
model parametrization. 

 Model hypotheses are assigned discrete probabil-
ities, while detailed variables require probability 
distributions. 

 This prior distribution model needs to be tested 
with data. This involves numerical modeling 
(also termed forward modeling) of the data, done 
by domain experts of these data sets. A falsifica-
tion test is a statistical test that requires statistical 
metrics and p-values. 

 Domain experts in Monte Carlo simulation will 
provide a Bayesian inversion of the model hy-
pothesis and variables given the data. 

 Make decisions based on the Bayesian uncer-
tainty quantification. 

To achieve this, all domain experts need to be in the 
same room. In Part III, we will discuss the various oppor-
tunities AI brings to make this paradigm possible. Before 
that, I will review some of the most common application 
of AI in mineral exploration. 

3. Part II: Current applications of AI 

3.1 What is AI? 

To discuss the various forms of AI (Kochenderfer, 
2015; Russell and Norvig, 2016; Sutton and Barto, 1998), 
I will use a specific example instead of formal definitions. 
Consider a self-driving car. Consider such a car given the 
task of getting from A to B. The goal is to arrive safely & 
lawfully, within a reasonable time, at its destination. To do 
so, it needs to take various actions of steering, accelerat-
ing, decelerating and steering. Sensors classify the current 
state of the road, and predictions are made for future ac-
tions of itself and other road users or objects. Let’s identify 
the major components 

 Rewards: the goal: safe, lawful, fast 

 Actions: steering, braking 

 State: the current situation on the road with mark-
ers, other cars & people, and their direction and 
velocity 

 Data: various sensors of the car are used to pre-
dict the current state and the next. 

 Belief: sensors provide imperfect measurements, 
so the true state is not fully observed, only a be-
lief of the true state. 

Solutions to these problems start by formulating the 
problem into mathematical equations. These equations are 
essential, and it would be ineffective to right away start 
solving the problem by collating a set of algorithms. With-
out going into the details of these equations, we can 
identify the following mathematical components 

 From the current state and actions, a prediction 
needs to be made on what state we find ourselves 
in at the next time step. However, actions may 
not be executed perfectly, so a transition proba-
bility model is defined. 

 Sensors allows to measure the current state, but 
sensors are not perfect. This uncertainty (belief in 
AI) depends on what state we are in. A prediction 
model, termed a belief model, allows updating 
the current state with new data. Bayes’ rule is of-
ten used. 

 Routes need to be planned and executed, but up-
dates on such plans need to be made. A planning 
of a route beforehand is called offline planning, 
while replanning while executing is termed 
online planning. 

Notice that two fundamental uncertainties exist: state 
transition uncertainty and model (state) uncertainty (be-
lief). Cases with transition uncertainty are often solved 
using reinforcement learning, while those with model un-
certainty are formulated as partially observable Markov 
decision processes. Partially observed refers to an inexact 
observation of the true world, while Markov refers to the 
sequential planning aspect. 

Once we have a formulation, we can apply algorithms 
and tools to solve them: 



  https://doi.org/10.46690/serc.2025.02.05 

Sustain. Earth Resour. Commun. 2025, 1(2): 69-82  76 

 Predictions can be modeled using machine learn-
ing methods, such as neural networks or 
generative (AI) algorithms. 

 Offline and online sequential planning under un-
certainty can be solved using Monte Carlo Tree 
search algorithms 

Having identified these two major components of AI 
(predicting and deciding), I will review how they are cur-
rently applied in exploration. 

3.1.1. AI that makes predictions 

Making predictions requires datasets. The most im-
portant challenge in mineral exploration is the creation 
and curation of datasets, not the type of machine learning 
method that is used. Several challenges exist in creating 
such datasets that can be multi-variate, 3D spatial, com-
positional, and extremal. Rarely does one encounter such 
a challenging prediction/learning problem in other do-
mains. I will consider three crucial and often overlooked 
or unaddressed components of data curation: 

 

 Not all data is on the same scale 

 Not all data should be pooled into a single data 
set 

 Learning in area A may not apply to area B 

Common errors: 
 Upscaling ground truth data (e.g. a core sample) 

to the geophysical scale. 

 Deterministic interpolation of geophysical and 
geochemical datasets. 

 Merging data from different zones cannot be ex-
plained geologically. 

 Applying machine learning models from Area A 
to Area B without testing the validity of doing so. 

All these common errors lead to an increase in false 
positives (see Fig. 4, for an example), and gives AI a bad 
name in the industry, while the actual problem is not AI, it 
is people curating the data.  

 

Fig. 4. case study of mineral prospectivity mapping comparing deterministic vs stochastic interpolation of input data (see 
(Wang et al., 2020)) for details. In deterministic interpolation (a), all data (geophysical, geological, geochemical) are 
interpolated deterministically, producing input that has less variance than the data itself. In stochastic interpolation (called 
simulation), the scale (i.e., variance) of the data is accounted for. As a result, one does not simply obtain one possible 
MPM, but many possible ((b) shows two realizations) due to the propagation of interpolation uncertainty. When compar-
ing the two approaches with known deposits, the recall of the deterministic prediction equals 0.4, while the recall of the 
stochastic approach is 0.7. Additionally, in a stochastic approach, one can assess a return (c) vs a risk (d). Here, the return 
is the mean of the log odds ratio, while the risk is its variance. Locations where risk and return are optimally traded off 
are good candidates for further exploration (e). 
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A significant error in the current paradigm is some-
thing that has long been known in mining geostatistics 
(Journel and Huijbregts, 1978): data at various scales may 
have significant differences in variance. An example is 
that of comparing interpolated geophysical data with out-
crop sampling or core measurement, see  
Fig. 5. Any deterministic interpolation will, with certainty, 
reduce the variance: the interpolated geophysics has a 

smaller variance than the actual data. Second, label data 
from drilling at cm scale is often upscaled (or worse, 
moved) to enable a comparison with the geophysical data. 
The result is an increased correlation between label and 
predictor that is induced (not real) because of these oper-
ations. As a result, current mineral potential or prospective 
mapping have a significant number of false positives.  
 

 
Fig. 5. Example of the impact of ignoring the difference in scale when performing machine learning with geophysical 
data and borehole data (size = ~15cm, see (c)). Shown is a case of rare earth element resource expansion (Caers et al., 
2025), where an area of high drill density (in (a)) is used to expand the resource into an area with almost no drilling. The 
geophysical data here are radiometric data (Th and U) along flightlines, which can be correlated with the REE borehole 
concentration. The line spacing (a) is about 100m, and the grid onto which the radiometric data is interpolated is about 
15m (b and c). The interpolation is needed in order to compare the radiometric data with the REE concentration. In 
deterministic interpolation, this scale difference is largely ignored, and the assessed correlation coefficient is artificially 
high because of the smoothing of the interpolators (Wang et al., 2020). In stochastic simulation, one accounts for the 
variability of the data and addresses the uncertainty of the interpolation. As a result, the predictions are much more focused 
(compare (b) with (c)), while the traditional approach of ignoring scales leads to overly optimistic predictions (and pos-
sibly false positives as a consequence). 

Instead, mineral exploration can be seen as a reduc-
tion of uncertainty over multiple scale. Mineral 
prospectivity maps are informative at the large scale but 
for the smaller scale, additional data through field work is 
required to narrow down to the prospect scale. Fig. 6 
shows an example in Ni-Cu-Co exploration in Canada, 
where exploration went from the 1000km scale to the 
30cm scale. The role of machine learning here can be es-
sential, in the sense that any new information can be used 
to directly update mineral potential maps and thereby 
guide geological field work in real time. 

3.1.2. AI that makes plans 

While machine learning and generative techniques 
are popular and ubiquitous, the applications AI in deci-
sion-making is less common. Indeed, decision-making 
requires the irrevocable allocation of resources, which is 
not with the realm of academic research. To date, the only 

significant and impactful application of decision-making 
AI in mineral exploration is the characterization of the 
high-grade portion of the Mingomba deposit in Zambia 
(Dempsey, 2024). In this case, historical drilling was re-
analyzed using more recent data analysis tools, and new 
hypotheses were generated that include a higher-grade 
portion than was previously considered. AI (formulated as 
a POMDP, Partially Observable Decision Processes) was 
used to sequentially plan drilling. The initial goal of such 
drilling included the option for the AI to reduce uncer-
tainty on geological hypotheses on the spatial extent of the 
high-grade mineralization. This method was shown to be 
much more efficient than the traditional grid-based drill-
ing (Mern and Caers, 2023). The efficiency comes from 
focusing on falsifying geological hypotheses rather than 
merely attempting to hit the mineralization.  
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Fig. 6. (left) a map showing the potential for Ni-Cu-Co mineralization, the yellow color indicates high potential (from 
Lawley et al., 2021). (top) a zoom into the Cape Smith area, which has high potential. The resolution of the map (the 
size of the pixel) is 5 × 5km. (right) AI-assisted geological field work, the resolution of this map is 30 cm (multispectral 
imaging data), allowing geologists to identify efficiently locations of mineralized rocks (red color). Several of the red 
areas in the day 9 prediction were later confirmed to have Ni-Cu-Co mineralization. 

4. Part III: The future of AI in mineral exploration 

In Part III, I will focus on how AI can help accelerate 
the discovery and characterization of critical mineral de-
posits. I will focus first on data analysis and prediction, 
then on AI-based decision making. 

4.1. Human-in-the-loop data science & ML 

The initial deployment of AI was met, in some cor-
ners, with a level of defensiveness. Indeed, the perception 
was that AI would replace or somehow reduce the im-
portance of domain experts. Nobody likes to see their jobs 
targeted, and this is indeed a common fear today. The per-
ception was that AI would make a new discovery. This 
will not happen in the way of an AI putting a big red cross 
on a map where robots will go and drill, make a discovery. 
The way I view AI in this context is to enhance the domain 
expert, by removing tasks that the expert no longer needs 
to do or is no good at, and focus on the creativity of their 
process-based thinking (geology and geochemistry). Let’s 
start with what humans are good at: 

 Generate conceptual hypotheses on how miner-
alization took place from large-scale to deposit 
scale. 

 Interpret relationships in time and space of vari-
ous geological units. 

 Discover patterns in low-dimensional datasets. 

 Build complex deterministic numerical models, 
ensuring geological plausibility. 

and what they are not good at 

 Read 1000s of documents and create summaries 
and query systems in a decision-relevant time. 

 Discover patterns in high-dimensional multivari-
ate and/or spatial datasets. 

 Avoiding cognitive bias. 

 Realistic uncertainty quantification. 

 Make rational decisions that involve uncertainty. 

The most significant potential is an AI-system that in-
teracts with humans and applies novel data science on 
high-dimensional space-time data to generate plausible 
hypotheses of mineralization, its extent and grade, and 
that is decision-ready (e.g. for further data acquisition de-
cisions). And these hypotheses should be falsifiable, 
meaning that next to stating the hypotheses, one should 
state what data or data outcome will falsify the hypothesis. 
The latter is critical in avoiding cognitive bias. The deci-
sion-ready is essential; deterministic mapping does not 
provide such readiness. 

Foundational to this system are data-science tools. As 
mentioned above, the most important problem is not the 
choice of the machine learning algorithm, but the proper 
curating & thorough analysis of data to generate hypothe-
ses. Humans tend to focus on what they know are 
indicative relationships of mineralization. For example, in 
the exploration of massive Ni sulfide deposits geologist 
use the scatterplot between MgO and Ni to classify the 
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potential for a massive sulfide mineralization (Barnes et 
al., 2016). This bivariate plot, possibly supported by a few 
more, can be enhanced by data science and AI methods 
that may discover additional high-dimensional relation-
ships (four or more) that were previously not discovered. 
As such, development and use of advanced data science 
and AI-based or enabled modeling & analysis tools will 
lead the way in aiding domain experts, for example 

 Detection of anomalies on high-dimensional ge-
ological & geochemical data. 

 High-dimensional pattern analysis of geophysi-
cal data to make comparisons with known 
deposits.  

 Non-linear versions of basic data science tools 
such as PCA, MDS, and FA. 

 Spatial clustering techniques that can detect com-
plex spatial relationships. 

 Advanced geostatistical methods can create com-
plex surfaces constrained to various datasets. 

 Data science tool that focuses on falsification, in-
stead of data fitting.  

 Multi-physics stochastic inversion from borehole 
to country-scale. 

 Surrogate modeling to enable multi-physics in-
version. 

 Generative AI to create realistic 3D variation of 
structure, lithology & mineralogy. 

This also means that a collaboration between a data 
scientists and a domain expert is where the magic will 
happen. We will comment on this topic later. 

4.2. AI to support the Popper-Bayes protocol for optimal 
decision making 

While data science and ML aid in generating hypoth-
eses of locations of interest, decisions need to be made on 
what to do next, mainly, what type of data is now needed, 
typically 

 Dense airborne geophysics 

 Surface geophysics & geochemistry 

 Drilling 

Rational decision-making based on the approach we 
discussed above means 

 Generating multiple high-level geological hy-
potheses at the deposit scale. 

 Generating multiple models of the subsurface 
constrained to current data, under each geologi-
cal hypothesis. Generative techniques from the 
oil & gas industry are readily available (see in-
troduction). 

 Determining the goal of the drilling, i.e., the re-
ward, or multiple rewards, such as better 
knowing 

o Depth of mineralization 

o Extent of mineralization 

o Maximizing intersection with mineralization 

Once multiple hypotheses are generated, metrics of 
optimality can be used to determine what data should be 
acquired next. Value of information is a common metric 
in decision science that can be used to rank data acquisi-
tion campaigns based on rigorous economics. In the 
absence of economics, a dollar-free metric, the efficacy of 
information (Caers et al., 2022) has been introduced that 
quantifies how much future data will reduce uncertainty 
on average on some quantity of interest. Mathematically, 
this metric compares what we know about the quantity 𝑥 
without the data (the prior probability distribution 𝑓ሺ𝑥ሻ) 
and what we would know when we have the data (the pos-
terior distribution 𝑓ሺ𝑥|𝑑ሻ for various possible outcomes 
of the data 𝑑 and for a given survey design 𝑦), the equa-
tion goes as follows: 

𝐸𝑂𝐼ሺ𝑦ሻ ൌ න න 𝑓ሺ𝑥|𝑑ሺ𝑦ሻሻ𝑙𝑜𝑔 ൬
𝑓ሺ𝑥|𝑑ሺ𝑦ሻሻ
𝑓ሺ𝑥ሻ

൰ 𝑑𝑑𝑑𝑥
௫ௗ

 

This metric can be calculated for various data acqui-
sition proposals 𝑦 using Monte Carlo simulation (Caers 
et al., 2026). 

When performing sequences of measurements, such 
as planning a sequence of drilling, one can use AI frame-
works, such as Partially Observable Markov Decision 
processes (POMDP) solved using Monte Carlo tree 
search, to determine the optimal sequential drilling plan 
(Mern and Caers, 2023). The properties of interest, how-
ever, will change, namely the following hierarchy can be 
defined. Drill for hypotheses, then volume, then grade. In-
deed, once drilling has falsified all hypotheses but one, 
focus should be on the volume of the mineral system, then 
the grade, or, if desired, combine in a grade-tonnage curve. 

4.3. Implementation in industry 

Despite the promise of a comprehensive scientific 
method to make exploration more effective and thereby 
less costly, several non-scientific barriers exist in the ex-
ploration enterprise. These are 1) ingrained practices & 
company organization 2) the exploration industry organi-
zation 3) no comprehensive software. 

The mining industry remains a conservative industry 
where innovation is met with resistance. Most large com-
panies focus on making a profit from large mining 
operations and their investment in exploration remains rel-
atively low. Large companies are also hierarchically 
organized in disciplines, rather than in problem-solving. I 
know of at least one large company that has ~1% of ex-
perts in data science and ~99% in the geosciences.  

Companies are organized such that experts in each 
field handle the responsibilities best suited to their training 
and experience. The emphasis is often on figuring out de-
tails, without knowing whether they in fact affect the 
ultimate decision. A successful implementation of AI re-
quires a re-organization of large companies around 
decision-making problems as opposed to task-executing 
mind-set. This is not simply a matter of reorganization but 
also a matter of education. Geologists don’t need to 



  https://doi.org/10.46690/serc.2025.02.05 

Sustain. Earth Resour. Commun. 2025, 1(2): 69-82  80 

become data scientists, but there is a great need to learn 
each other’s language, a matter I will revisit later in the 
education section.  

Socialization still happens around a single model, 
performed with software that is complicit to allow biased 
& deterministic interpretation. Over time, these models 
are attributed to a sense of truth. As people move on, the 
reason for the actual interpretation is lost, and the particu-
lar geometry created is now considered data, instead of a 
model. Uncertainty in a company is often considered a 
failure. Not knowing is equated with “lack of knowledge” 
of a person. If only the person spent more time on the 
problem and worked harder, uncertainty would be re-
duced. 

Proper software for a rational decision-making ap-
proach is lacking. The goal of a software company is to 
sell software that people want to buy, and those who buy 
it like software that does what they want it to do, accord-
ing to the leading paradigm. Rational decision making 
based on rigorous uncertainty quantification often re-
quires high-performance computing, such as in the 
implementation of Monte Carlo sampling methods, and 
comes at a $ cost. Small exploration companies are not 
going to spend tens of thousands of dollars on a cloud 
computing system, nor will they hire people with the ex-
pertise to make this happen. 

Finally, most exploration is done using junior mining 
companies, i.e., small companies owning one or two pro-
spects, employing a few geoscientists. Funding for such 
an operation is often based on showing some form of suc-
cess (hitting mineralization with one borehole), and the 
pursuit of additional drilling dollars from investors trumps 
a rigorous scientific approach to decision-making. Falsi-
fying a geological hypothesis requires long-term thinking 
in terms of data acquisition, while junior mining compa-
nies focus on the short-term only. 

Major mining companies have made venture capital 
available that brings new talent and interest to the mining 
industry. The emphasis lies in bringing technological in-
novation in either sensing, computing, or predicting, with 
often a focus on AI. These are much-needed initiatives. 
Besides technological innovation, a systemic change 
needs to happen within which these technologies can 
thrive. This means that resource assessment protocols 
need to become open to new technologies, even encourage 
them. The JORC reporting standard is still dominating 
how exploration is done, because these are used by inves-
tors. A proposal would be to extend the current 
framework, setting standards for uncertainty questions 
that are steeped in the same practices as in the oil & gas 
industry. Such standards may be accompanied by report-
ing on computing efforts for verification and validation of 
results, in addition to the mandate of a qualified person. 
After all, the more information and effort is put into an 
assessment, and supported by those expert with experi-
ence, the more likely the resource assessment will be 
rigorous, not just in the estimate but in the quantification 
of uncertainty of such estimates. To date, most uncertainty 
quantification in the mineral resource industry do not rely 
on Bayesian methods, while it is much in the interest of 
someone owning property to be Bayesian in order to know 
their risk exposure. 

It is also clear that new financial vehicles are needed. 
A one-borehole-at-a-time investment is like betting on a 
single stock each time. However, the common way to in-
vest in stocks is to have a portfolio where risk and return 
are traded off. The industry should therefore move to in-
vestment vehicles that bet on a portfolio of prospects, by 
understanding the trade-off between risk (uncertainty) and 
return (estimated present value).  

4.4. Sustainable decision-making 

Mining has a clear environmental impact and affects 
the communities that live near these mines. This means 
that not every economic deposit should be mined if the 
effect outweighs the impact. Nevertheless, one can easily 
argue that this impact is inversely proportional to the 
grade and size of the deposit. Low-grade copper mining in 
the US, now mined at less than 0.5%, requires large open-
pit mining, while a 6% grade mine in Zambia can be 
mined using underground mining techniques. Thus, ex-
ploration for high-grade deposits will lead to more 
sustainable mining. Unfortunately, sustainability (social 
& environmental) is rarely a metric in exploration, and the 
junior mining company model is not helping either. Sus-
tainability is often a secondary consideration after 
resources are turned into economic reserves. This may 
well turn out costly to the company, as construction is de-
layed due to the ensuing lawsuits. Sustainability must 
therefore be grounded in jurisdiction-specific social and 
environmental contexts and regulations in federal, state, 
and local levels. Decision-making around exploration 
should include these additional metrics and preferably 
should be done on a portfolio of prospects, rather than 
looking at an individual one. In such a portfolio, the risk-
return profile of a single deposit now includes all factors 
and can be traded-off with other prospects.  

4.5. Knowledge retention and decimation 

Having been in Academia for more than 30 years, ar-
guably, its largest transformation started in the last few 
years with the arrival of LLMs. The professor needed to 
rush to rewrite their syllabus, the way homework and ex-
ams were done. I believe this transformation is long 
overdue. Problems facing humanity, such as climate 
change and the energy transition, are far exceeding the 
breadth of knowledge of a single scientific discipline, yet 
we still don’t offer a degree in Mineral Exploration. Sec-
ondly, information is now produced instantaneously, and 
its intelligence is still improving. Going to the library to 
copy from a journal is transformed into an algorithm that 
can search and summarize 1000s of documents, almost in 
real time. 

At the same time, interest in degrees such as eco-
nomic geology and mining engineering keeps decreasing 
in the Western world. Now more than ever it is urgent to 
retain the century-old knowledge about the formation of 
ore deposits, some stored in dusty geological reports in 
forgotten closets around the world. Generation of high-
quality databases such in Canada and Australia is much 
needed all over the world. In Africa, only one country has 
opened such a database (https://gsd.gov.zm (accessed on 
December 2025)). Making such information accessible 
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and open on web platform is essential to attract invest-
ment. 

5. Summary 

In this personal essay, I advocate for the scientific and 
industrial community to come together around a new sci-
entific method for mineral exploration. As exploration is 
moving “under cover” the existing paradigm of starting 
with surface outcrops assisted with deterministic geophys-
ical inversion is no longer effective, as indicated by the 
declining discovery rate. Instead, a decision-focused ap-
proach that explicitly assesses risk, through uncertainty 
quantification, will reduce the number of false positive 
drilling outcomes. This uncertainty quantification will 
need to acknowledge the fundamental lack of understand-
ing we still have about the nature of orebodies, as modeled 
through a quantification of epistemic uncertainty. Addi-
tionally, proper treatment of data at their respective scales, 
though proper geostatistical methods today are lacking 
and much needed, to reduce false positives. 

This change will not happen overnight, as the indus-
try and parts of academia remain set on socializing 
decisions on a single conceptual and 3D model. It will re-
quire reorganization of the industrial apparatus, new 
funding models, and a new form of education that focuses 
on problem solving in addition to the useful domain ex-
pertise focus. 
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