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Abstract: The global capacity for mineral processing must expand rap-
idly to meet the demand for critical minerals, which are essential for
building the clean energy technologies necessary to mitigate climate
change. However, the efficiency of mineral processing is severely limited
by uncertainty, which arises from both the variability of feedstock and
the complexity of process dynamics. To address this uncertainty, the cur-
rent approach to designing and operating mineral processing circuits
emphasizes process stability and control, relying on limited and/or indi-
rect empirical tests, deterministic methods, and expert intuition. Yet a
significant portion of valuable minerals is lost in waste streams, translat-
ing to millions of dollars of lost revenue and greater potential for
environmental damage. To optimize mineral processing circuits under
uncertainty, we introduce an Al-driven approach that formulates mineral
processing as a Partially Observable Markov Decision Process. We
demonstrate the capabilities of this approach in handling both feedstock
uncertainty and process model uncertainty to optimize the operation of a
simulated, simplified flotation cell as an example. We show that by inte-
grating the process of information gathering (i.e., uncertainty reduction)
and process optimization, this approach has the potential to consistently
perform better than traditional approaches at maximizing an overall ob-
jective, such as net present value. We highlight the power of this approach
in scenarios where the dynamics of the system, and subsequently the re-
lationship between the inputs (e.g., feedstock composition, flotation
operation settings) and desired outputs (e.g., recovery and grade), are not
well known. Our methodological demonstration of this optimization-un-
der-uncertainty approach for a synthetic case provides a mathematical
and computational framework for later real-world applications, with the
potential to improve both the laboratory-scale design of experiments and
industrial-scale operation of mineral processing circuits without any ad-
ditional hardware.
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1. Introduction

In 2024, the average global temperature surpassed the
1.5 °C threshold set by the UN Intergovernmental Panel
on Climate Change (IPCC) for the first time in recorded
history (World Meteorological Organization, 2024). The
IPCC’s most recent report is clear: the consequences of
human-caused climate change are immense and already
taking place, and a clean energy transition is necessary to
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cut carbon emissions and mitigate these consequences
(Lee et al., 2023). To build the requisite clean energy tech-
nologies in such a short timeframe will require rapid
sourcing of vast quantities of critical minerals (Interna-
tional Energy Agency, 2021). At the same time, many
countries have expressed geopolitical and national secu-
rity concerns regarding critical mineral supply chains—
especially for refining and processing capacity, which is
heavily concentrated in China.
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Mineral processing, a key component to the sourcing
of critical minerals, faces increasing difficulties stemming
from declining ore quality and a growing imperative to
improve environmental performance. Additionally, min-
eral processing is energy- and water-intensive
(International Energy Agency, 2021), and so as an indus-
try, it must work towards improving the sustainability of
operations to ensure consistency with the eventual goal of
combating climate change. Improving the efficiency of
mineral processing can serve the dual goal of reducing
waste and resource usage while increasing production and
thereby revenue.

The efficiency of mineral processing is severely lim-
ited by uncertainty from both the variability of feedstock
and the complexity of process dynamics (Amini, 2017;
Amini and Noble, 2021; Koermer and Noble, 2025;
Koermer, 2022). As Bascur (2019) states, “a critical prob-
lem in the process of ore extraction is the variability of the
different elements that constitute the ore”. Traditionally,
this uncertainty is addressed with process control and op-
erational intelligence, which go hand-in-hand. Process
control seeks to minimize variations in output by adjusting
control parameters in response to input variations, and op-
erational intelligence aims to collect information via real-
time sensors to inform process control and optimization
(Bascur, 2019; Concha A and Bascur, 2024).

The proportional-integral-derivative (PID) control
scheme is still the most commonly used process control
technique today, but it is only sufficient for single-loop
systems, which have one controlled and one manipulated
variable. Indeed, despite decades of research into ad-
vanced control, Hodouin (2011) and Shean and Cilliers
(2011) both emphasize that PID controllers continue to
dominate industrial mineral processing, with limited
measurable improvements in performance. Even where
advanced multivariable or predictive control has been in-
troduced, it is often constrained by the reliability of
sensors, model uncertainty, and the difficulty of tuning
nonlinear systems (Jovanovi¢ and Miljanovi¢, 2015).
These reviews collectively highlight that while model pre-
dictive control (MPC) has become the de facto “advanced”
option, its effectiveness depends heavily on accurate, de-
terministic models and consistent process dynamics,
which is an unrealistic representation of industrial flota-
tion or grinding circuits. As a result, the traditional
approach relies on a mix of expert intuition, empirical test-
ing, extensive data collection, and deterministic
optimization and control methods (Jiang et al., 2017).

Notably, Hodouin (2011) and Shean and Cilliers
(2011) each call for a more holistic or hierarchical view of
process optimization, integrating sensors, observers, con-
trollers, and optimizers. Yet, even in these “optimization”
frameworks, optimization remains subordinate to control:
setpoints are tuned to achieve a target grade or recovery,
rather than directly optimizing the operation itself. In
practice, this means the underlying objective functions—
whether metallurgical or economic—are treated as super-
visory layers above fixed control architectures, rather than
as part of a unified decision process.

As Jovanovi¢ and Miljanovi¢ (2015) note, the result
is an architecture that can stabilize the process but

struggles to adapt optimally when ore characteristics or
process conditions shift unpredictably.

Accordingly, the most common approach to operat-
ing a mineral processing plant is to view it as a problem
of control first and optimization second, even though the
overarching goal of the plant is an optimization problem
(i.e., maximizing economic profit, sustainability, safety,
etc.). We will study the alternative: approaching process
operation as a problem of optimization first and foremost,
with subproblems of control. In this view, the goal is not
to control variations, as process control seeks to do, but
rather to optimize the process while accounting for varia-
tions—in other words, to leverage uncertainty rather than
fight it. The potential value of optimization is undeniable
(Bascur, 2019; Ding et al., 2012; Hodouin et al., 2001),
and the limitations of current control frameworks suggest
that a probabilistic, decision-theoretic formulation may be
necessary to achieve it.

A few projects have demonstrated the value of con-
sidering uncertainty in the optimization of mineral
processing. Vilikangas et al. (2025) used sensitivity anal-
ysis and uncertainty propagation to understand the
influence of feedstock variability and inform data collec-
tion. Koch and Rosenkranz (2020) and Amini (2017, 2021)
presented stochastic approaches that outperformed deter-
ministic methods at designing mineral processing circuits.
Jiang et al. (2017), Koermer and Noble (2025), and
Koermer (2022) used reinforcement learning (RL) and
machine learning (ML) to determine optimal operating
conditions given unknown process dynamics at steady-
state. This body of prior work forms a strong basis for con-
sidering uncertainty in optimizing mineral processing.

It is important to note that this paper focuses on deci-
sion-making and optimization under uncertainty, which is
what RL is designed to do, rather than data-driven model-
ing, which is the goal of ML. While there has been a
growing body of work applying Al to mineral processing,
these efforts have been almost entirely focused on ML
(e.g., improving empirical process models, predicting
metallurgical outcomes from sensor data) rather than RL
(McCoy and Auret, 2019; Bai et al., 2025). Although
model-based RL (which we employ) can incorporate ML
for improved process modeling, the core objective is to
learn operational policies that optimize performance over
time, not to generate predictive models. To date, the min-
eral processing literature lacks a framework for explicitly
integrating uncertainty reduction with optimization, par-
ticularly one that accounts for uncertainty arising from
both feedstock variability and process complexity.

In this work, we aim to show that mineral processing
operations can be framed as a problem of optimization un-
der uncertainty, and outline the features of this approach.
We then develop a mathematical formulation of a simpli-
fied flotation cell that incorporates both feedstock
uncertainty and process uncertainty to inform optimiza-
tion over time via data collection. We use synthetic
scenarios to demonstrate the capability of this framework
for optimizing the operation of a flotation cell in compar-
ison to PID and MPC approaches, particularly in cases of
significant feedstock and process uncertainty. This paper
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Fig. 1. Bare-bones framing of a mineral process (e.g., flotation) with a variable feedstock and complex process framed
in terms of decision-making under uncertainty.

serves as a demonstration of a comprehensive mathemat-
ical approach to optimizing mineral processing under
uncertainty, rather than attempting to claim that this ap-
proach “performs better” than existing approaches.
Having highlighted the potential for this approach in var-
ious synthetic scenarios, we will discuss its potential
application to real-world test cases.

2. Features of an optimization under uncertainty
approach

2.1. Framing a mineral process

Any mineral process can be viewed as a variable feed
stream passing through a complex process to turn into a
product. As our goal is optimization rather than to accu-
rately describe the intricacies of a given process, we
model any mineral process as a system with uncontrolled
inputs, outputs, and control parameters that change how
inputs translate into outputs (see Fig. 1).

To put this in the language of decision-making under
uncertainty, the inputs and the process dynamics can be
conceptualized as the states of the system, control param-
eters as actions, the outputs as the reward, and any
measurements taken to better ascertain the conditions of
the process as observations.

In this framework, the key uncertainties, feedstock
variability and process complexity, can be classified as
state uncertainty and model uncertainty, respectively (la-
beled with teal boxes in Fig. 1). Feedstock variability
makes the feedstock composition and mineralogy, or the
state, uncertain, since we cannot measure every aspect of
the feedstock at every point in time and space. Process
complexity means we cannot know exactly how inputs
(states and actions) translate into the output (reward), so
the model we use to describe this causal relationship is
uncertain.

2.2. The mathematical framework

belief
updates

Belief

measurements

policy

The principal mathematical framework for decision-
making under uncertainty problems is called a Partially
Observable Markov Decision Process (POMDP). A
POMDP models a sequence of actions in the real world at
the same time as information is gathered. This approach is
now common in Al applications such as aircraft collision
avoidance, self-driving cars, and robotics, and is similar
to the Al used in chess and other games (Xiang and Foo,
2021; Xiang et al., 2021).

Mathematically, a POMDP is defined by a tuple (S,
A,0,T,R,Z, y), where S is the state space, A is the action
space, O is the observation space, 7 is the transition func-
tion, R is the reward function, Z is the observation function,
and y is the discount factor (Arief et al., 2025). The
POMDP framework builds upon the Markov Decision
Process (MDP) framework, a broad approach to sequen-
tial decision making in stochastic environments that forms
the basis for most reinforcement learning. In all MDPs, an
agent makes decisions (referred to as actions) at discrete
timesteps, which influence how the system transitions
from one state to the next. The current state of the system
and action taken at a given timestep result in a reward that
the agent receives, which represents the optimization ob-
jective. The way that actions are chosen based on the
current state or observations of the system is called a pol-
icy. An intelligent agent decides a policy by learning from
interacting with the system over time (Kochenderfer et al.,
2022).

The POMDP framework assumes that the true state
of the system cannot be known. Instead, the agent holds a
belief over possible states, which is represented as a prob-
ability distribution informed by indirect, incomplete,
and/or noisy observations. More information about MDPs
and POMDPs can be found in the textbook Algorithms for
Decision Making (Kochenderfer et al., 2022).

production

Fig. 2. Simplified diagram depicting the key components of a POMDP and how they progress at each timestep.
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The diagram in Fig. 2 shows the key components of a
POMDP at a given timestep, revealing its sequential na-
ture. The labels given in Fig. 1 for a generic mineral
process map directly onto this framework.

2.3. Belief: A stochastic representation of an uncertain
state

The belief is the likelihood of being in a given state
and is typically represented by a probability distribution
over states. Although the belief is not technically part of
the POMDP formulation itself, it is a crucial component
of decision-making under uncertainty and how POMDP
solvers navigate problems.

The Al literature uses belief instead of probability as
a nomenclature to identify uncertainty.

The intelligent agent forms a belief of the state based
on measurements that it receives. As shown in Fig. 3, the
belief evolves over time as more measurements are col-
lected. Uncertainty, represented by variance values, is
captured in the belief’s nature as a probability distribution
rather than a discrete quantity or set of quantities.

Belief
100
80
8
o 60 F
(=]
k=
]
=
g #0f
(=]
o
20 |
0 ) . . . )
0 20 40 60 80 100
Time (min)

Fig. 3. An example of a belief at the end of a simulation,
with occasional measurements (black dots) informing the
belief and its associated uncertainty (blue regions).

2.4. Reward: The optimization objective

The reward function describes the optimization ob-
jective. Value judgments from experts are necessary to
define what the ultimate goal of the optimization should
be. As shown in Fig. 4, the reward captures the inherent
tradeoff between the cost of measuring and the cost of not
having information.

Reward

25 -

20

15

Action (Flow Rate)

@ Measured 10
@ Did Not Measure

0 5 10 15 20 25
State (Feedstock Composition (%))

Fig. 4. An example of a reward surface (reward as a func-
tion of state and action) showing how the intelligent agent
balances a cost associated with taking measurements with
the cost of choosing a poor action. Actions are taken as the
state fluctuates in time, with red dots representing times
when measurements were not taken, and green dots repre-
senting times when measurements were taken.

3. Mathematical formulation of a flotation cell

Now that we have established the general concept of
applying an optimization-under-uncertainty approach to
mineral processing, we can formulate the operation of a
flotation cell as a POMDP. A simple formulation is shown
in Fig. 5, labeling a few components of a flotation cell un-
der this framework.

For now, we represent the flotation cell as a batch pro-
cess, where one batch is processed at each timestep. This
allows for straightforward experimental validation at the
bench scale. The formulation can be adapted for a contin-
uous process, as is typical at the industrial scale. The
values used throughout our flotation cell formulation and
implementation are meant to roughly reflect typical values
for phosphate flotation as an example.

B Agitator B Reagent Dosage
Speed B Wash Water
 pH
B Flotation Time

1 H Feed
Rate

® Feedstock
characteristics
(E.g., composition,
particle size, mineralogy) o Flotation kinetics

t and hydrodynamics
Legend

B Grinding (changes e State
feedstock) W Action

= @ Approx. NPV
(Grade + Recovery
— Operating Costs)

B Air Flow Rate # Reward

Fig. 5. A simple POMDP formulation of a flotation cell.
Additional possible state variables and control parameters
beyond the scope of the formulation in this paper are in-
cluded as examples.

3.1. State

The state is represented by the following variables:
* Feedstock composition ¢ € [0.0, 42.2] (%)

* Concentrate recovery r € [0.0, 100.0] (%)

* Concentrate grade g € [0.0, 42.2] (%)

* Timestep T

For simplicity and clarity of presentation, we repre-
sent the feedstock characteristics with one variable, the
average composition for a given batch. Feed and concen-
trate grade can only achieve a maximum of 42.2% because
they represent P205 grade, and pure fluorapatite (the pri-
mary phosphate-bearing mineral) has a P205 grade of
42.2%. The state includes time mostly as a technicality,
since the transition function (which is a function of the
state and action) depends on time.

In this case, there is no explicit component of the state
that corresponds to the “flotation kinetics” as depicted in
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Fig. 5 or “process condition” as depicted in Fig. 1. The
concentrate recovery and grade implicitly capture these
components, as discussed later in Section 4, which is why
they are used as components of the state instead. If, in-
stead of average composition, a size-by-liberation matrix
were used to represent the feedstock, then the liberation
and size-dependent kinetic rate constant would become an
internal “process condition” state variable.

3.2. Actions

Actions are control parameters that can be adjusted to
change the operating conditions of the flotation cell, as
well as the decision to make measurements.

For simplicity and clarity of presentation, we choose two
control parameters as our action set.

* Flotation time ¢ € [5.0, 15.0] (min)
* Air flow rate /'€ [50, 150] (L/hr)
* Measure feedstock

For the model uncertainty tests in Section 7.1, the
Measure feedstock action is always set to true. Measure
feedstock becomes a choice between true and false for the
feedstock uncertainty tests in Section 7.2.

3.3. Transition function

The transition function describes how the current
state transitions to the next state as a function of the cur-
rent state and action. In other words, it corresponds to a
forward model that describes how the system changes in
time.

The transition model is described by a combination of
the following:

« the simple kinetic model (see Section 4)

« a stochastic representation (e.g., a Gaussian process)
of the feedstock composition fluctuating in time

* stochastic representations (e.g., Gaussian process)
of the errors between the kinetic model and the true
grade and recovery

Note that in this formulation, transition probabilities
are only dependent on the state, not the action. Also, we
consider actions to have a deterministic effect. In other
words, if we were to know the state, then choosing an ac-
tion would deterministically result in a given reward.
Transition uncertainty can be introduced by making ac-
tions stochastic (in other words, imprecise).

3.4. Observations

The observations are:
* Average feedstock composition (can be null)
* True recovery and grade

For the model uncertainty tests in Section 7.1, full ob-
servations of the state are received at every timestep, so
the implementation technically reduces to an MDP (no
state uncertainty, only transition uncertainty). For the
feedstock uncertainty tests in Section 7.1, observations of
feedstock composition are only received when the meas-
ure feedstock action is taken. Otherwise, no information
about the feedstock is collected at that timestep.

3.5. Observation function

The observation function is the likelihood of an ob-
servation given a state. For the scope of this paper, since
the goal is more to demonstrate the approach, the obser-
vation function is just a delta function (i.e., an exact
observation). The observation returned at each timestep is
simply the true state.

3.6. Reward

Here, we consider the reward to be an approximation
of the net present value (NPV) of the process. We use the
Moroccan phosphate industry (i.e., the OCP Group) as an
example. The specific formula for the reward defined in
Eq. 1 uses back-of-the-envelope estimates for the current
production of phosphate concentrate as a function of re-
covery, the price as a function of grade, and the operating
costs (U.S. Geological Survey, 2024; World Bank, 2025).
The operating cost formula in Eq. 2 is not intended to re-
flect realistic operating costs, but rather is designed to
create a global optimum from the tradeoff between grade,
recovery, and operating costs. Examples of the reward at
a fixed feedstock composition depicted in Fig. 8 exhibit
this tradeoff.

reward = 229 B/ 3STIMUT] _ hppy [ ] (1)
100 [timestep/yr] timestep
OPEX = _t + 50f [tlmestep] (2)

4. Simple flotation model

We lay out a simple flotation model to describe the
system to be optimized. This model of the system corre-
sponds to the transition function in a POMDP formulation.

In flotation, recovery and grade are the key perfor-
mance metrics, and there is a natural tradeoff between the
two. (As recovery approaches 100%, concentrate grade
approaches feed grade, and as concentrate grade ap-
proaches 100%, recovery approaches 0%. A grade-
recovery curve then essentially forms a Pareto front.)

We model the black box mechanical flotation cell
with empirically-inspired equations. The goal is to capture
broad relationships between the inputs, control parameters,
and outputs, rather than to be accurate.

The instantaneous recovery r and the instantaneous
concentrate grade g are both reported in percentage (i.e.,
ranging from 0 to 100),

r(k,t, f) = 100 s 3)

1+ktf+10

L)(l_

exp(—kt/10) ]
1+exp(4—004f)) ( )

gl k,t,f)= c[1+(1—

where c is the feedstock composition (i.e., feed grade) in
percentage, k is the flotation rate constant in min™! (set to
1), ¢ is the flotation time in minutes, and f'is the air flow
rate in L/hr.

The exact equations are mostly arbitrary, with num-
bers that very roughly correspond to phosphate flotation.
The grade equation, in particular, is set up to refer to P,Os
grade. They are designed to highlight the tradeoffs present
in flotation cells in a simple fashion, as can be seen in the
plots of this simple kinetic model in Figs. 6a and 7a.
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Although we are aware of much more sophisticated mod-
els, we intentionally choose a simplistic model of flotation
to more clearly demonstrate and display the features of a
POMDP approach.

We do not expect our simple kinetic model to accu-
rately capture flotation dynamics, but rather to serve as a
reasonable first guess or prior. We can capture all inaccu-
racies in our model, as well as any inaccuracies in any
measurement of the true grade and recovery in an error
function. Then, we can represent the true grade or recov-
ery as the sum of the kinetic model and some stochastic
error function, as depicted in Fig. 6 and 7. The true grade
and recovery result in a true reward function as well,
shown in Fig. 8.

For the synthetic cases in this paper, the “true” error
function is generated stochastically to produce a ground
truth grade and recovery that represent “reality”. Just like
in real life, this ground truth is unknown to the intelligent
agent seeking to optimize the flotation cell, but can be ex-
plored through measurements.

150 1505
:" 125 2
g )
100 2
z
75 °
(1
E =
<

O 7.5 10.0 125 1509 58
Flotation Time (min)

/hr

Air Flow Rate

(a) Kinetic model

0 75 100125150
Flotation Time (min)

(b) Error function

5. Belief update

As introduced in Section 2.3, the intelligent agent up-
dates the belief to learn the true grade and recovery and
improve upon our prior model of the system. In the flota-
tion problem, the belief is represented by:

* Gaussian process of feedstock composition

* Gaussian processes of the grade and recovery error
functions

Uncertainty is represented stochastically with Gauss-
ian processes. Actions (i.e., setting the air flow rate and
flotation time) are chosen at each point in time as the feed-
stock composition fluctuates. The measured grade and
recovery then inform the updated belief (examples shown
in Fig. 9), which helps improve decision-making. The
Gaussian processes in the belief are updated by sequen-
tially refitting them to include the new data.

.0 7.5 10.0 12.5 15.0 9
Flotation Time (min)

iy
w
o

Jury
N
w

100

~
ul

<

Air Flow Rate (L/hr)

u

(c) True grade

Fig. 6. An example of the grade (%) as a function of the actions (air flow rate and flotation time) at a
fixed feedstock composition.
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(c) True recovery

Fig. 7. An example of the recovery (%) as a function of actions (air flow rate and flotation time) at a fixed
feedstock composition.
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Fig. 8. Examples of the reward (NPV) as a function of actions (air flow rate and flotation time) at a
fixed feedstock composition.
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Fig. 9. Beliefs represented by Gaussian processes that are progressively updated as new data is collected
over time. Black dots represent collected data.

6. Simulation setup

We investigate the extent to which the performance
of different approaches is affected by feedstock (i.e, state)
and process (i.e., model) uncertainty. We do so by running
simulations of 100 timesteps, which represent 100 flota-
tion batches processed over one year. All simulations were
run on a 13th Gen Intel Core 19 using Windows 11.

6.1. Establishing the baseline

In a POMDP framework, a given approach to choos-
ing actions based on the current belief is called a policy.
Control and optimization algorithms can be considered
types of policies. As stated in Section 1, two commonly
used deterministic methods, PID and MPC, are used as a
frame of reference. Although MPC is typically used as a
control method, we implement MPC using an optimiza-
tion approach with the goal of maximizing the reward, not
just the grade and recovery, to serve as a direct compari-
son to the POMDP approach. Here, MPC uses the simple
kinetic model (prior) as a fixed model throughout the sim-
ulation, unless otherwise stated.

6.2. Performance metric

Since we are aiming for the goal of process optimiza-
tion, the reward (proxy for NPV, established in Section
3.6) is used as the metric of comparison.

6.3. POMDP solver

To solve the problem we have now formulated as a
POMDP, we use a well-established online solver called
Partially Observable Monte Carlo Planning (POMCP)
(Silver and Veness, 2010). To determine a policy,
POMCP uses Monte Carlo tree search (MCTS), a com-
mon algorithm for deciding a course of action from many

T150 =

= [/ =

5 =

o 125 %

& 100 ;

z

3 75 2

w ) 5
= N\ | 35 <

< 585 75 100 125 15.0 .0 7.5 10.0 12.5 15.0

Flotation Time (min) Flotation Time (min)

(a) Kinetic model (b) High accuracy

possible futures. The most well-known application of
MCTS is in gameplaying Al

POMCEP requires a discrete action space, so the flota-
tion time is discretized with a step size of 0.5, and the air
flow rate is discretized with a step size of 5.0. These val-
ues reflect the approximate sensitivity of equipment in
laboratory and industrial applications, and there is limited
practical use in varying the flotation time by less than 30
seconds and the air flow rate by less than 5 L/hr. However,
we do explore the impact of the action space sizing on the
performance of POMCP in Appendix D Table D1.

For applications to continuous action spaces and
more expansive state and action spaces in general, we rec-
ommend the use of POMCPOW, which has been well-
established to address large state and action spaces (Sun-
berg and Kochenderfer, 2018).

7. Demonstration of optimization-under-uncertainty
approach

7.1. Optimization under model uncertainty

To evaluate optimization under model uncertainty,
we consider three cases of differing degrees of model un-
certainty: where the simple flotation model has high,
medium, and low accuracy. The model accuracy reflects
how closely the kinetic model matches reality. Examples
are plotted in Fig. 10.

The median results (over 100 simulations) in Table 1
show that although MPC performs better than the POMDP
approach when the model is accurate, its performance lags
behind the POMDP approach as the model accuracy de-
creases. Table Al. shows that in the low accuracy scenario,
there are even cases where MPC performs worse than a
PID controller.

Air Flow Rate (L/hr)
Air Flow Rate (L/hr)

35
59.0 7.5 10.0 12.5 15.0
Flotation Time (min)

== ——li3s5
59.0 7.5 10.0 12.5 15.0
Flotation Time (min)

(¢) Medium accuracy (d) Low accuracy

Fig. 10. Reward functions (NPV) of varying degrees of similarity to the kinetic model.
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Table 1. Median performance of MPC and POMDP approaches relative to PID controller baseline when varying model
accuracy (i.e., increasing model uncertainty).

Model accuracy Model predictive control POMDP approach
High Med Low High Med Low
rel. recovery [A%] -3.6 -3.8 -4.3 -3.1 -33 -3.1
rel. grade [A%)] +0.4 +0.5 +0.9 +0.4 +0.7 +1.9
rel. reward [ASM/yr] +119 +126 +126 +95 +129 +283

7.1.1. Effect of feedstock variability

Now, we consider the effect of feedstock variability
on optimization under model uncertainty when the feed-
stock is fully known (i.e., measured at every timestep). We
test different variances of the feedstock composition un-
der a set of grade and recovery surfaces for which, when
the feedstock composition is constant, MPC and the
POMDP approach have near-equivalent performance.
This corresponds roughly to the medium model accuracy
case (see Fig. 10). (A log variance of -3 can be considered
near-constant feedstock, as can be seen in the plots of sam-
ple feedstock composition signals in Appendix B Fig. B1.)

As can be seen in Fig. 11, as the feedstock variance
increases, the relative reward of the POMDP approach in-
creases. Detailed results (shown in Table C1) indicate that
decreasing the feedstock composition correlation length
also seems to lead to an increase in the relative reward of
the POMDP approach. However, this only occurs at high
variance, and the effect is less pronounced.

Relative Reward
(A $§\4/yr]

6
4

2 {

4 0

Feedstock Composition

Log Variance
-2

-4
Fig. 11. Median reward of POMDP approach relative to
MPC. Error bars represent 20th and 80th percentiles. Log
correlation length is fixed at 2.

7.2. Optimization under state uncertainty

Next, we consider the independent effect of state (i.e.,
feedstock) uncertainty. We fix the grade and recovery sur-
faces and choose a high-variance feedstock composition
signal. Then, the number of feedstock measurements
across the simulation is varied. Taking fewer measure-
ments corresponds to higher state uncertainty. A high,
medium, and low model accuracy scenario is considered.

As shown in Fig. 12, for a high variability feedstock,
the POMDP approach improves at a faster rate than MPC
as the number of measurements (i.e., information gathered)
increases. The POMDP approach is never able to outper-
form MPC at high model accuracy (consistent with the
results in Section 7.1), nor in any case with zero measure-
ments. However, after a certain number of measurements
in the medium and low accuracy cases, the POMDP ap-
proach is able to surpass MPC. For the medium accuracy

case, crossover occurs at n = 30, and for the low accuracy
case, crossover occurs at n = 3 (where n = number of
measurements).

Reward [$M/yr
3560[ /yrl

3540
3520
35000
3480
\

« MPC
POMDP Number of

20 40 60 80 100Measurements

(a) High model accuracy

Reward [SM/yr]

« MPC
POMDP Number of

F 20 40 60 80 100Measurements

(b) Medium model accuracy

Reward [SM/yr]

« MPC
POMDP Number of

F 20 40 60 80 100Measurements

(c) Low model accuracy

Fig. 12. Performance of MPC and POMDP ap-
proaches for a high-variance feedstock
composition signal and three fixed grade and re-
covery surfaces, varying the number of
measurements. Lines are exponential curves of
best fit.

7.3. Uncertainty reduction

Finally, we analyze the capacity of different ap-
proaches to reduce uncertainty. To put MPC and the
POMDP approach on even footing, MPC is given the
same learning capacity as the POMDP approach. In other
words, an adaptive MPC approach is implemented, where
the same Gaussian processes used to form the belief of the
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POMDP are used to update the model that the adaptive
MPC approach uses. We now conduct the same test as in
Section 7.2, for another set of fixed grade and recovery
surfaces with medium model accuracy and high-variance
feedstock composition.

As shown in Fig. 13, adaptive MPC does not perform
significantly better than MPC, even in a scenario where
the POMDP approach surpasses MPC. Fig. 14 shows the
Gaussian process models of the system at the end of the
simulation when measurements are always taken. Points
represent samples taken over the simulation. Fewer points
shown indicate more repeated sampling. Evidently, adap-
tive MPC explores a much smaller space than the POMDP
approach.

Reward [$M/yr]

3400/
3350% v % 2
v *
33000 8¢ e MPC
[ g
3250 f» =
/ L 4

*

POMDP

¢ Adaptive MPC

Number of

20 40 60 80

Fig. 13. Performance of MPC, POMDP, and adaptive
MPC for a medium model accuracy and high-variance
feedstock compositional signal case, varying the number
of measurements. Lines are curves of best fit. Since the
data for adaptive MPC is noisy, a linear rather than expo-

100 Measurements

‘- 150

=
N
ul

nential fit is used.

Air Flow Raie (

O 7.5 10.0 12.5 15.
Flotation Time (min)

(a) True reward

6 8 10 12 14
Flotation Time (min)

(b) Adaptive MPC

6 8 10 12 14
Flotation Time (min)

(c) POMDP approach

Fig. 14. Comparison of the Gaussian process predictions for the reward function (NPV) with the true reward func-
tion. Adaptive MPC exhibits more repeated sampling, while the POMDP approach explores more and achieves a

more accurate process model.

8. Discussion

8.1. Analysis of results

The test cases presented reveal that an optimization-
under-uncertainty approach using a POMDP framework
is more successful at handling cases of significant model
uncertainty, adjusting to significant feedstock variability
under model uncertainty, and utilizing limited information
under state (i.e., feedstock) uncertainty.

In Section 7.1, we see that for MPC, a high-quality
deterministic optimization algorithm whose performance
depends heavily on the quality of the model (i.e., having
an accurate picture of the system), performance correlates
strongly with the accuracy of the model. In the high accu-
racy case, the predicted optimal region largely overlaps
with the actual optimal region, so using the kinetic model
suffices to inform optimal decision-making. As a result,
MPC is not only sufficient, but it outperforms the POMDP
approach.

But as soon as the model deviates from reality, MPC
struggles, while a POMDP approach consistently per-
forms well, even when the flotation model has low
accuracy. In the medium accuracy case, there is some
overlap in optimal regions, but there is now a new optimal
region that is not captured by the kinetic model. In the low
accuracy case, there is almost no overlap in optimal re-
gions, so relying on the kinetic model would result in
suboptimal decision-making.

(Note that both MPC and the POMDP approach con-
sistently find solutions that result in worse recoveries but
better grades than the PID controller. This is because these
two approaches are both seeking to optimize the reward,
which takes into account operating costs, while the PID
controller just seeks to maintain a high grade and recovery
setpoint regardless of other factors.)

Even with relatively high model accuracy, small in-
accuracies in the model can compound when the feedstock
has high variability, as shown in Section 7.1.1. The
POMDP approach is able to adjust and better account for
feedstock variability by developing a more accurate model
over time. These results imply that, in this case, having
more accurate information about the process model is
more important than having perfect information about the
feedstock in optimizing performance—in other words,
model uncertainty matters more than feedstock uncer-
tainty.

The importance of model uncertainty over feedstock
uncertainty is further supported by the results in Section
7.2. The POMDP approach almost always achieves a
greater reward than MPC in the low model accuracy case,
while the opposite is true in the high model accuracy case,
regardless of the level of feedstock uncertainty. If feed-
stock uncertainty had a greater influence on performance,
we would expect to see a crossover of the curves for all
depicted model accuracies. However, feedstock uncer-
tainty is still relevant, which is particularly clear in the
medium model accuracy case (see Fig. 12b). The greater
rate of improvement for the POMDP approach as the
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number of measurements increases indicates that it can
translate additional feedstock information into a greater
reward increase than MPC can. In other words, a POMDP
approach “learns” faster than MPC as more data is ac-
quired.

The faster learning rate of the POMDP approach,
thanks to its explicit integration of uncertainty reduction
into the optimization (balancing exploration with exploi-
tation), is especially evident in the results shown in
Section 7.3. Figs. 13 & 14 together clearly demonstrate
that although adaptive MPC is able to learn a more accu-
rate process model over time, its capacity to balance
exploration with exploitation is limited, hindering its per-
formance in the long run.

8.2. Summary of POMDP advantages

The advantages of the POMDP approach are best
summarized by comparing it to existing approaches in or-
der of complexity, and highlighting how it incorporates
more holistic and forward-looking features.

1. Direct search (or other deterministic approach) vs.
POMDP: POMDP performs global optimization in time,
not one-shot optimization.

2. Adaptive MPC vs. POMDP: POMDP looks at
longer horizons and performs stochastic optimization.

3. Robust optimization (probabilities encoded in con-
straints, or any other stochastic optimization approach) vs.
POMDP: POMDP incorporates exploration for uncer-
tainty reduction to inform future decision-making.

Even though robust/stochastic optimization ap-
proaches do consider uncertainty, they do not explicitly
contain a mechanism to reduce uncertainty over time. So,
although a comparison to a robust/stochastic optimization
approach is not presented here, Section 7.3 still demon-
strates the inherent capability of a POMDP approach to
perform uncertainty reduction, which improves perfor-
mance in the long run.

8.3. Implications for real systems

These results emphasize the power of the POMDP in
handling applications with high degrees of uncertainty, es-
pecially when the model of the system (i.e., the
description of process dynamics) has low accuracy. Note
that although these results are for simple test cases, we
would expect that in more complex, real systems, there
would be significant model uncertainty, which a POMDP
approach is better equipped to handle than deterministic
optimization. This approach has immediate relevance for
potential application in improving the design-of-experi-
ments of bench-scale flotation cells as well as in
optimizing the operation of industrial-scale flotation cells
without the need for any retrofitting. And although we use
the example of a flotation cell in this work, the framework
can be adapted to any process unit, or scaled up for opti-
mization of a flotation circuit, an entire mineral processing
circuit, an integrated mine and processing plant, and even
an entire vertical mineral supply chain.

Beyond improving existing operations, using a
POMDP approach could aid in the design and optimiza-
tion of versatile, highly adaptable mineral processing
plants that were previously not possible due to feedstock

variability and process complexity. Such a processing
plant could even obviate the need for blending, as it could
adjust operational settings for a wide range of possible
feedstocks.

Lastly, the use of a solver based on Monte Carlo tree
search ensures that the optimization decisions it makes are
interpretable. The goal is to aid mineral processing experts
in making decisions, rather than to take over decision-
making with Al altogether.

9. Conclusions

We have demonstrated that mineral processing can be
framed as a problem of optimization-under-uncertainty,
presenting a mathematical formulation of a simplified flo-
tation cell using the POMDP framework. A range of
synthetic test cases demonstrates the utility of the POMDP
approach compared to deterministic approaches like MPC,
especially in cases with significant feedstock (i.e., state)
and process (i.e., model) uncertainty. Through belief up-
dating, the POMDP formulation is designed to incorporate
both feedstock (i.e., state) and process (i.e., model) uncer-
tainty when performing optimization, which enables it to
handle conditions of significant uncertainty more readily
than deterministic methods such as MPC. Thus, an opti-
mization-under-uncertainty approach is particularly well-
suited for optimizing mineral processing.

Our work has presented the following advancements:

1. Mineral processing can be framed as a problem of
optimization-under-uncertainty, as demonstrated by our
mathematical formulation of a simplified flotation cell.

2. Framing the ultimate goal as optimization, rather
than control, is better suited to handling uncertainty in
mineral processing. MPC’s performance over PID alone
emphasizes this.

3. The representation of an unknown state and model
via a belief, and the integration of real-time data collection
into process optimization via belief updating, is funda-
mental to how a POMDP approach models uncertainty
and the reduction of uncertainty over time. In other words,
an intelligent agent learns a more accurate model of pro-
cess dynamics and estimation of feedstock variability over
time to improve process optimization.

4. Synthetic test cases confirm that in scenarios with
significant feedstock (i.e., state) and process (i.e., model)
uncertainty, a POMDP approach performs better than de-
terministic approaches like MPC.

Future work is needed to apply this approach to real-
world test cases. The nearest-term application could be for
the design of experiments of bench-scale flotation. The
formulation and code as presented in this paper could be
directly applied, along with a few tweaks to add complex-
ity, such as a more specific, well-developed flotation
model, the inclusion of feedstock characteristics beyond
an average composition, a larger set of control parameters,
and a more case-specific reward function. Similarly, this
work could be readily applied to optimizing the operation
of an industrial-scale flotation cell, with similar tweaks, as
well as swapping out flotation time for feed rate to con-
sider a continuous flotation process. The more fruitful
application would be in the design and operation of
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mineral processing circuits, which could apply the same
approach, but would require the development of a new
mathematical formulation. We hope that this will inspire
future work to improve the efficiency and sustainability of
industrial-scale mineral processing facilities.
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Detailed results of the relative reward for the low accuracy case described in Section 7 are presented in Table Al.
The p50 (median) values are the same as the values presented in Table 1.

Table A1. Comparison of reward between different control and optimization approaches.

Relative Reward (A$SM/yr)

Policy
p20 p50 p80
PID Controller (Baseline) - - -
Model Predictive Control (MPC) -14 +126 +258
Online Solver (DMU approach) +188 +283 +381
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Appendix B
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Fig. B1. Five example feedstock compositions over time with different variances and correlation lengths. The log
variance increases from -3 to 0 from top to bottom, and the log correlation length decreases from 4 to 0 from
left to right. The specific curves are not important; the intent is to show the change in the shape of the curves.

Appendix C
Detailed Results for Feedstock Variability (Detailed results for Section 7.1.1):

Table C1. Reward of POMDP approach relative to MPC (in A$M/yr) when varying feedstock composition correla-
tion length and variance.

Log Feedstock Composition Log Variance

Corr. -3.0 -2.0 -1.0 0.0

Len. p20 p50 p80  p20 p50 p80 p20 pS0  p80  p20 p50  p80
4.0 -6.0 0.1 54 58 -13 5.5 35 0.8 6.5 -2.5 1.6 9.8
3.0 -38  -0.2 37 37 0.3 29 -2.3 1.2 45 -1.7 3.0 9.5
2.0 21 =02 27 24 -0.2 2.8 -0.8 14 3.6 -0.1 35 7.8
1.0 -2.0 0.1 18 25 -00 1.6 -0.3 15 3.9 0.9 4.4 6.6
0.0 -1.4 0.2 19 -15 0.1 1.2 0.0 1.7 3.1 1.3 3.8 5.6

Appendix D Table D1. Reward of POMDP approach relative to

MPC (in ASM/yr) when varying action space granularity

The size and granularity of the action space (i.c., con- at different levels of grade and recovery error variance.

trol parameters) affect the results, since a larger action
space cannot be explored as efficiently by a Monte Carlo

tree search algorithm. In this paper, we use an action grid Action space Grade and recovery log variance
spacing of [0.5,5.0] (i.'e, consider ﬂojtation times with step Step size 30 20 1.0 0.0
size 0.5 minutes and air flow rates with step size 5.0 L/hr)

for all results, since it best reflects the most fine-grained (0.1, 1.0] -9 +94
control settings that are still realistic. Additional testing in [0.25,2.5] 14 4 91 127
Table D1 shows that for larger action spaces (i.c., smaller

step sizes), more model uncertainty is necessary for the [0.5,5.0] -5 +9 +78

POMDP approach to perform better than MPC.

Sustain. Earth Resour. Commun. 2025, 1(2): 100-112 111



https://doi.org/10.46690/serc.2025.02.07

References

Amini, S. H. Optimization of mineral processing circuit
design under uncertainty. Morgantown, West Vir-
ginia University, 2017.

Amini, S. H., Noble, A. Design of cell-based flotation cir-
cuits under uncertainty: A techno-economic
stochastic optimization. Minerals, 2021, 11: 459.

Arief, M., Alonso, Y., Oshiro, C., et al. Managing geolog-
ical uncertainty in critical mineral supply chains: A
POMDP approach with application to us lithium re-
sources, arXiv 2025, arXiv:2502.05690. Available
online: https://arxiv.org/abs/2502.05690 (accessed
on December 2025).

Bai, Z., Gao, P., Chu, M., et al. Artificial intelligence of
mineral processing process: A review of research
progress. Journal of Environmental Chemical Engi-
neering, 2025, 13(5): 118313.

Bascur, O. Process control and operational intelligence, in
SME Mineral Processing and Extractive Metallurgy
Handbook, Society for Mining, Metallurgy, and Ex-
ploration (SME), edited by R. C. Dunne and S. K.
Kawatra, pp. 277-316, 2019.

Concha A, F., Bascur, O. A. The Engineering Science of
Mineral Processing: A Fundamental and Practical
Approach, CRC Press, 2024.

Ding, J., Chai, T., Wang, H., et al. Knowledge-based
global operation of mineral processing under uncer-
tainty. IEEE Transactions on Industrial Informatics,
2012, 8: 849-859.

Hodouin, D. Methods for automatic control, observation,
and optimization in mineral processing plants. Jour-
nal of Process Control, 2011, 21: 211-225.

Hodouin, D., Jamsé-Jounela, S.-L., Carvalho, M., et al.
State of the art and challenges in mineral processing
control. Control Engineering Practice, 2001, 9: 995—
1005.

International Energy Agency (IEA). (2021). The role of
critical minerals in clean energy transitions, 2021.
Available online: https://www.iea.org/reports/the-
role-of-critical-minerals-in-clean-energy-transitions
(accessed on December 2025).

Jiang, Y., Fan, J., Chai, T., et al. Lewis, Data-driven flota-
tion industrial process operational optimal control
based on reinforcement learning. IEEE Transactions
on Industrial Informatics, 2017, 14: 1974—1989.

Jovanovié, 1., Miljanovi¢, I. Contemporary advanced con-
trol techniques for flotation plants with mechanical
flotation cells—A review. Minerals Engineering, 2015,
70: 228-249.

Koch, P.-H., Rosenkranz, J. Sequential decision-making
in mining and processing based on geometallurgical
inputs. Minerals Engineering, 2020, 149: 106262.

Kochenderfer, M. J., Wheeler, T. A., Wray, K. H. Algo-
rithms for decision making. MIT press, 2022.

Koermer, S. C. Bayesian methods for mineral processing
operations. Blacksburg, Virginia, Virginia Polytech-
nic Institute and State University, 2022,

Koermer, S., Noble, A. (2025). Optimization of a metal-
lurgical process with uncertain dynamics.

Available online: https://skoermer.github.io/me-
dia/Koermer%20Scott%20MPD%?20contest%20202
1.pdf (accessed on December 2025).

Lee, H., Calvin, K., Dasgupta, D., et al. (2023). Synthe-
sis report of the IPCC sixth assessment report
(ARO6). Available online: https://www.ipcc.ch/re-
port/ar6/syr/downloads/report/IPCC_AR6_SYR_SP
M.pdf (accessed on December 2025).

McCoy, J. T., Auret, L. Machine learning applications in
minerals processing: A review. Minerals Engineering,
2019, 132: 95-109.

Shean, B., Cilliers, J. A review of froth flotation control.
International Journal of Mineral Processing, 2011,
100: 57-71.

Silver, D., Veness, J. (2010) Monte-Carlo planning in
large POMDPs. Available online: https://proceed-
ings.neurips.cc/paper/2010/file/edfbelafcf9246bb0d
40eb4d8027d90f-Paper.pdf (accessed on December
2025).

Sunberg, Z., Kochenderfer, M. Online algorithms for
POMDPs with continuous state, action, and observa-
tion spaces. Proceedings of the International
Conference on Automated Planning and Scheduling,
2018, 28(1): 259-263.

U.S. Geological Survey. (2024). Phosphate rock.
Available online: https://pubs.usgs.gov/periodi-
cals/mcs2024/mcs2024-phosphate.pdf (accessed on
January 2024).

Vilikangas, H., Ohenoja, M., Brochot, S., et al. Evalua-
tion of model uncertainty propagation in mineral
process flowsheet designs. Scandinavian Simulation
Society, 2025, 456—463.

World Bank. (2025). World Bank Commodities Price
Data. Available online: https://the-
docs.worldbank.org/en/doc/18675f1d1639c7a34d46
3£59263ba0a2-0050012025/related/CMO-Pink-
Sheet-April-2025.pdf (accessed on 2 April 2025).

World Meteorological Organization (WMO). (2025).
WMO confirms 2024 as warmest year on record at
about 1.55 °C above pre-industrial level, 2025.
Available online: https://wmo.int/news/media-cen-
tre/wmo-confirms-2024-warmest-year-record-
about-155degc-above-pre-industrial-level (accessed
on 10 January 2025).

Xiang, X., Foo, S. Recent advances in deep reinforcement
learning applications for solving partially observable
markov decision processes (POMDP) problems: Part
l—fundamentals and applications in games, robotics
and natural language processing. Machine Learning
and Knowledge Extraction, 2021, 3: 554-581.

Xiang, X., Foo, S., Zang, H. Recent advances in deep re-
inforcement learning applications for solving
partially observable markov decision processes
(POMDP) problems part 2—applications in transpor-
tation, industries, communications and networking
and more topics. Machine Learning and Knowledge
Extraction, 2021, 3: 863—878.

Sustain. Earth Resour. Commun. 2025, 1(2): 100-112

112



