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Abstract: The global capacity for mineral processing must expand rap-
idly to meet the demand for critical minerals, which are essential for 
building the clean energy technologies necessary to mitigate climate 
change. However, the efficiency of mineral processing is severely limited 
by uncertainty, which arises from both the variability of feedstock and 
the complexity of process dynamics. To address this uncertainty, the cur-
rent approach to designing and operating mineral processing circuits 
emphasizes process stability and control, relying on limited and/or indi-
rect empirical tests, deterministic methods, and expert intuition. Yet a 
significant portion of valuable minerals is lost in waste streams, translat-
ing to millions of dollars of lost revenue and greater potential for 
environmental damage. To optimize mineral processing circuits under 
uncertainty, we introduce an AI-driven approach that formulates mineral 
processing as a Partially Observable Markov Decision Process. We 
demonstrate the capabilities of this approach in handling both feedstock 
uncertainty and process model uncertainty to optimize the operation of a 
simulated, simplified flotation cell as an example. We show that by inte-
grating the process of information gathering (i.e., uncertainty reduction) 
and process optimization, this approach has the potential to consistently 
perform better than traditional approaches at maximizing an overall ob-
jective, such as net present value. We highlight the power of this approach 
in scenarios where the dynamics of the system, and subsequently the re-
lationship between the inputs (e.g., feedstock composition, flotation 
operation settings) and desired outputs (e.g., recovery and grade), are not 
well known. Our methodological demonstration of this optimization-un-
der-uncertainty approach for a synthetic case provides a mathematical 
and computational framework for later real-world applications, with the 
potential to improve both the laboratory-scale design of experiments and 
industrial-scale operation of mineral processing circuits without any ad-
ditional hardware. 

 
Keywords: Mineral processing; process optimization; flotation; critical 

minerals 

1. Introduction 

In 2024, the average global temperature surpassed the 
1.5 ℃ threshold set by the UN Intergovernmental Panel 
on Climate Change (IPCC) for the first time in recorded 
history (World Meteorological Organization, 2024). The 
IPCC’s most recent report is clear: the consequences of 
human-caused climate change are immense and already 
taking place, and a clean energy transition is necessary to 

cut carbon emissions and mitigate these consequences 
(Lee et al., 2023). To build the requisite clean energy tech-
nologies in such a short timeframe will require rapid 
sourcing of vast quantities of critical minerals (Interna-
tional Energy Agency, 2021). At the same time, many 
countries have expressed geopolitical and national secu-
rity concerns regarding critical mineral supply chains—
especially for refining and processing capacity, which is 
heavily concentrated in China. 
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Mineral processing, a key component to the sourcing 
of critical minerals, faces increasing difficulties stemming 
from declining ore quality and a growing imperative to 
improve environmental performance. Additionally, min-
eral processing is energy- and water-intensive 
(International Energy Agency, 2021), and so as an indus-
try, it must work towards improving the sustainability of 
operations to ensure consistency with the eventual goal of 
combating climate change. Improving the efficiency of 
mineral processing can serve the dual goal of reducing 
waste and resource usage while increasing production and 
thereby revenue.  

The efficiency of mineral processing is severely lim-
ited by uncertainty from both the variability of feedstock 
and the complexity of process dynamics (Amini, 2017; 
Amini and Noble, 2021; Koermer and Noble, 2025; 
Koermer, 2022). As Bascur (2019) states, “a critical prob-
lem in the process of ore extraction is the variability of the 
different elements that constitute the ore”. Traditionally, 
this uncertainty is addressed with process control and op-
erational intelligence, which go hand-in-hand. Process 
control seeks to minimize variations in output by adjusting 
control parameters in response to input variations, and op-
erational intelligence aims to collect information via real-
time sensors to inform process control and optimization 
(Bascur, 2019; Concha A and Bascur, 2024).  

The proportional-integral-derivative (PID) control 
scheme is still the most commonly used process control 
technique today, but it is only sufficient for single-loop 
systems, which have one controlled and one manipulated 
variable. Indeed, despite decades of research into ad-
vanced control, Hodouin (2011) and Shean and Cilliers 
(2011) both emphasize that PID controllers continue to 
dominate industrial mineral processing, with limited 
measurable improvements in performance. Even where 
advanced multivariable or predictive control has been in-
troduced, it is often constrained by the reliability of 
sensors, model uncertainty, and the difficulty of tuning 
nonlinear systems (Jovanović and Miljanović, 2015). 
These reviews collectively highlight that while model pre-
dictive control (MPC) has become the de facto “advanced” 
option, its effectiveness depends heavily on accurate, de-
terministic models and consistent process dynamics, 
which is an unrealistic representation of industrial flota-
tion or grinding circuits. As a result, the traditional 
approach relies on a mix of expert intuition, empirical test-
ing, extensive data collection, and deterministic 
optimization and control methods (Jiang et al., 2017).  

Notably, Hodouin (2011) and Shean and Cilliers 
(2011) each call for a more holistic or hierarchical view of 
process optimization, integrating sensors, observers, con-
trollers, and optimizers. Yet, even in these “optimization” 
frameworks, optimization remains subordinate to control: 
setpoints are tuned to achieve a target grade or recovery, 
rather than directly optimizing the operation itself. In 
practice, this means the underlying objective functions—
whether metallurgical or economic—are treated as super-
visory layers above fixed control architectures, rather than 
as part of a unified decision process. 

As Jovanović and Miljanović (2015) note, the result 
is an architecture that can stabilize the process but 

struggles to adapt optimally when ore characteristics or 
process conditions shift unpredictably. 

Accordingly, the most common approach to operat-
ing a mineral processing plant is to view it as a problem 
of control first and optimization second, even though the 
overarching goal of the plant is an optimization problem 
(i.e., maximizing economic profit, sustainability, safety, 
etc.). We will study the alternative: approaching process 
operation as a problem of optimization first and foremost, 
with subproblems of control. In this view, the goal is not 
to control variations, as process control seeks to do, but 
rather to optimize the process while accounting for varia-
tions—in other words, to leverage uncertainty rather than 
fight it. The potential value of optimization is undeniable 
(Bascur, 2019; Ding et al., 2012; Hodouin et al., 2001), 
and the limitations of current control frameworks suggest 
that a probabilistic, decision-theoretic formulation may be 
necessary to achieve it.  

A few projects have demonstrated the value of con-
sidering uncertainty in the optimization of mineral 
processing. Välikangas et al. (2025) used sensitivity anal-
ysis and uncertainty propagation to understand the 
influence of feedstock variability and inform data collec-
tion. Koch and Rosenkranz (2020) and Amini (2017, 2021) 
presented stochastic approaches that outperformed deter-
ministic methods at designing mineral processing circuits. 
Jiang et al. (2017), Koermer and Noble (2025), and 
Koermer (2022) used reinforcement learning (RL) and 
machine learning (ML) to determine optimal operating 
conditions given unknown process dynamics at steady-
state. This body of prior work forms a strong basis for con-
sidering uncertainty in optimizing mineral processing. 

It is important to note that this paper focuses on deci-
sion-making and optimization under uncertainty, which is 
what RL is designed to do, rather than data-driven model-
ing, which is the goal of ML. While there has been a 
growing body of work applying AI to mineral processing, 
these efforts have been almost entirely focused on ML 
(e.g., improving empirical process models, predicting 
metallurgical outcomes from sensor data) rather than RL 
(McCoy and Auret, 2019; Bai et al., 2025). Although 
model-based RL (which we employ) can incorporate ML 
for improved process modeling, the core objective is to 
learn operational policies that optimize performance over 
time, not to generate predictive models. To date, the min-
eral processing literature lacks a framework for explicitly 
integrating uncertainty reduction with optimization, par-
ticularly one that accounts for uncertainty arising from 
both feedstock variability and process complexity. 

In this work, we aim to show that mineral processing 
operations can be framed as a problem of optimization un-
der uncertainty, and outline the features of this approach. 
We then develop a mathematical formulation of a simpli-
fied flotation cell that incorporates both feedstock 
uncertainty and process uncertainty to inform optimiza-
tion over time via data collection. We use synthetic 
scenarios to demonstrate the capability of this framework 
for optimizing the operation of a flotation cell in compar-
ison to PID and MPC approaches, particularly in cases of 
significant feedstock and process uncertainty. This paper 
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Fig. 1. Bare-bones framing of a mineral process (e.g., flotation) with a variable feedstock and complex process framed 
in terms of decision-making under uncertainty. 

serves as a demonstration of a comprehensive mathemat-
ical approach to optimizing mineral processing under 
uncertainty, rather than attempting to claim that this ap-
proach “performs better” than existing approaches. 
Having highlighted the potential for this approach in var-
ious synthetic scenarios, we will discuss its potential 
application to real-world test cases. 

2. Features of an optimization under uncertainty  
approach 

2.1. Framing a mineral process 

Any mineral process can be viewed as a variable feed 
stream passing through a complex process to turn into a 
product. As our goal is optimization rather than to accu-
rately describe the intricacies of a given process, we 
model any mineral process as a system with uncontrolled 
inputs, outputs, and control parameters that change how 
inputs translate into outputs (see Fig. 1).  

To put this in the language of decision-making under 
uncertainty, the inputs and the process dynamics can be 
conceptualized as the states of the system, control param-
eters as actions, the outputs as the reward, and any 
measurements taken to better ascertain the conditions of 
the process as observations. 

In this framework, the key uncertainties, feedstock 
variability and process complexity, can be classified as 
state uncertainty and model uncertainty, respectively (la-
beled with teal boxes in Fig. 1). Feedstock variability 
makes the feedstock composition and mineralogy, or the 
state, uncertain, since we cannot measure every aspect of 
the feedstock at every point in time and space. Process 
complexity means we cannot know exactly how inputs 
(states and actions) translate into the output (reward), so 
the model we use to describe this causal relationship is 
uncertain. 

2.2. The mathematical framework 

The principal mathematical framework for decision-
making under uncertainty problems is called a Partially 
Observable Markov Decision Process (POMDP). A 
POMDP models a sequence of actions in the real world at 
the same time as information is gathered. This approach is 
now common in AI applications such as aircraft collision 
avoidance, self-driving cars, and robotics, and is similar 
to the AI used in chess and other games (Xiang and Foo, 
2021; Xiang et al., 2021).  

Mathematically, a POMDP is defined by a tuple ⟨S, 
A, O, T, R, Z, γ⟩, where S is the state space, A is the action 
space, O is the observation space, T is the transition func-
tion, R is the reward function, Z is the observation function, 
and γ is the discount factor (Arief et al., 2025). The 
POMDP framework builds upon the Markov Decision 
Process (MDP) framework, a broad approach to sequen-
tial decision making in stochastic environments that forms 
the basis for most reinforcement learning. In all MDPs, an 
agent makes decisions (referred to as actions) at discrete 
timesteps, which influence how the system transitions 
from one state to the next. The current state of the system 
and action taken at a given timestep result in a reward that 
the agent receives, which represents the optimization ob-
jective. The way that actions are chosen based on the 
current state or observations of the system is called a pol-
icy. An intelligent agent decides a policy by learning from 
interacting with the system over time (Kochenderfer et al., 
2022). 

The POMDP framework assumes that the true state 
of the system cannot be known. Instead, the agent holds a 
belief over possible states, which is represented as a prob-
ability distribution informed by indirect, incomplete, 
and/or noisy observations. More information about MDPs 
and POMDPs can be found in the textbook Algorithms for 
Decision Making (Kochenderfer et al., 2022). 

 

Fig. 2. Simplified diagram depicting the key components of a POMDP and how they progress at each timestep. 
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The diagram in Fig. 2 shows the key components of a 
POMDP at a given timestep, revealing its sequential na-
ture. The labels given in Fig. 1 for a generic mineral 
process map directly onto this framework. 

2.3. Belief: A stochastic representation of an uncertain 

state 

The belief is the likelihood of being in a given state 
and is typically represented by a probability distribution 
over states. Although the belief is not technically part of 
the POMDP formulation itself, it is a crucial component 
of decision-making under uncertainty and how POMDP 
solvers navigate problems. 

The AI literature uses belief instead of probability as 
a nomenclature to identify uncertainty. 

The intelligent agent forms a belief of the state based 
on measurements that it receives. As shown in Fig. 3, the 
belief evolves over time as more measurements are col-
lected. Uncertainty, represented by variance values, is 
captured in the belief’s nature as a probability distribution 
rather than a discrete quantity or set of quantities. 

Fig. 3. An example of a belief at the end of a simulation, 
with occasional measurements (black dots) informing the 
belief and its associated uncertainty (blue regions).  

2.4. Reward: The optimization objective  

The reward function describes the optimization ob-
jective. Value judgments from experts are necessary to 
define what the ultimate goal of the optimization should 
be. As shown in Fig. 4, the reward captures the inherent 
tradeoff between the cost of measuring and the cost of not 
having information. 

 

Fig. 4. An example of a reward surface (reward as a func-
tion of state and action) showing how the intelligent agent 
balances a cost associated with taking measurements with 
the cost of choosing a poor action. Actions are taken as the 
state fluctuates in time, with red dots representing times 
when measurements were not taken, and green dots repre-
senting times when measurements were taken. 

3. Mathematical formulation of a flotation cell  

Now that we have established the general concept of 
applying an optimization-under-uncertainty approach to 
mineral processing, we can formulate the operation of a 
flotation cell as a POMDP. A simple formulation is shown 
in Fig. 5, labeling a few components of a flotation cell un-
der this framework.  

For now, we represent the flotation cell as a batch pro-
cess, where one batch is processed at each timestep. This 
allows for straightforward experimental validation at the 
bench scale. The formulation can be adapted for a contin-
uous process, as is typical at the industrial scale. The 
values used throughout our flotation cell formulation and 
implementation are meant to roughly reflect typical values 
for phosphate flotation as an example. 

 
Fig. 5. A simple POMDP formulation of a flotation cell. 
Additional possible state variables and control parameters 
beyond the scope of the formulation in this paper are in-
cluded as examples. 

3.1. State 

The state is represented by the following variables: 

• Feedstock composition c ∈ [0.0, 42.2] (%) 

• Concentrate recovery r ∈ [0.0, 100.0] (%) 

• Concentrate grade g ∈ [0.0, 42.2] (%) 

• Timestep T 

For simplicity and clarity of presentation, we repre-
sent the feedstock characteristics with one variable, the 
average composition for a given batch. Feed and concen-
trate grade can only achieve a maximum of 42.2% because 
they represent P2O5 grade, and pure fluorapatite (the pri-
mary phosphate-bearing mineral) has a P2O5 grade of 
42.2%. The state includes time mostly as a technicality, 
since the transition function (which is a function of the 
state and action) depends on time. 

In this case, there is no explicit component of the state 
that corresponds to the “flotation kinetics” as depicted in 
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Fig. 5 or “process condition” as depicted in Fig. 1. The 
concentrate recovery and grade implicitly capture these 
components, as discussed later in Section 4, which is why 
they are used as components of the state instead. If, in-
stead of average composition, a size-by-liberation matrix 
were used to represent the feedstock, then the liberation 
and size-dependent kinetic rate constant would become an 
internal “process condition” state variable. 

3.2. Actions 

Actions are control parameters that can be adjusted to 
change the operating conditions of the flotation cell, as 
well as the decision to make measurements. 
For simplicity and clarity of presentation, we choose two 
control parameters as our action set. 

• Flotation time t ∈ [5.0, 15.0] (min) 

• Air flow rate f ∈ [50, 150] (L/hr) 

• Measure feedstock  

For the model uncertainty tests in Section 7.1, the 
Measure feedstock action is always set to true. Measure 
feedstock becomes a choice between true and false for the 
feedstock uncertainty tests in Section 7.2. 

3.3. Transition function 

The transition function describes how the current 
state transitions to the next state as a function of the cur-
rent state and action. In other words, it corresponds to a 
forward model that describes how the system changes in 
time. 

The transition model is described by a combination of 
the following: 

• the simple kinetic model (see Section 4) 

• a stochastic representation (e.g., a Gaussian process) 
of the feedstock composition fluctuating in time 

• stochastic representations (e.g., Gaussian process) 
of the errors between the kinetic model and the true 
grade and recovery 

Note that in this formulation, transition probabilities 
are only dependent on the state, not the action. Also, we 
consider actions to have a deterministic effect. In other 
words, if we were to know the state, then choosing an ac-
tion would deterministically result in a given reward. 
Transition uncertainty can be introduced by making ac-
tions stochastic (in other words, imprecise). 

3.4. Observations 

The observations are: 

• Average feedstock composition (can be null) 

• True recovery and grade 

For the model uncertainty tests in Section 7.1, full ob-
servations of the state are received at every timestep, so 
the implementation technically reduces to an MDP (no 
state uncertainty, only transition uncertainty). For the 
feedstock uncertainty tests in Section 7.1, observations of 
feedstock composition are only received when the meas-
ure feedstock action is taken. Otherwise, no information 
about the feedstock is collected at that timestep. 

3.5. Observation function  

The observation function is the likelihood of an ob-
servation given a state. For the scope of this paper, since 
the goal is more to demonstrate the approach, the obser-
vation function is just a delta function (i.e., an exact 
observation). The observation returned at each timestep is 
simply the true state. 

3.6. Reward 

Here, we consider the reward to be an approximation 
of the net present value (NPV) of the process. We use the 
Moroccan phosphate industry (i.e., the OCP Group) as an 
example. The specific formula for the reward defined in 
Eq. 1 uses back-of-the-envelope estimates for the current 
production of phosphate concentrate as a function of re-
covery, the price as a function of grade, and the operating 
costs (U.S. Geological Survey, 2024; World Bank, 2025). 
The operating cost formula in Eq. 2 is not intended to re-
flect realistic operating costs, but rather is designed to 
create a global optimum from the tradeoff between grade, 
recovery, and operating costs. Examples of the reward at 
a fixed feedstock composition depicted in Fig. 8 exhibit 
this tradeoff. 

𝑟𝑒𝑤𝑎𝑟𝑑 ൌ
ହ଴௚ ሾ$ ௧⁄ ሿ ∙ ଷହ௥ ሾெ௧ ௬௥⁄ ሿ

ଵ଴଴ ሾ௧௜௠௘௦௧௘௣ ௬௥⁄ ሿ
െ 𝑂𝑃𝐸𝑋 ቂ

$ெ
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ଶ
𝑡 ൅

ଵ
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4. Simple flotation model 

We lay out a simple flotation model to describe the 
system to be optimized. This model of the system corre-
sponds to the transition function in a POMDP formulation. 

In flotation, recovery and grade are the key perfor-
mance metrics, and there is a natural tradeoff between the 
two. (As recovery approaches 100%, concentrate grade 
approaches feed grade, and as concentrate grade ap-
proaches 100%, recovery approaches 0%. A grade-
recovery curve then essentially forms a Pareto front.)  

We model the black box mechanical flotation cell 
with empirically-inspired equations. The goal is to capture 
broad relationships between the inputs, control parameters, 
and outputs, rather than to be accurate. 

The instantaneous recovery r and the instantaneous 
concentrate grade g are both reported in percentage (i.e., 
ranging from 0 to 100), 

𝑟ሺ𝑘, 𝑡,𝑓ሻ ൌ 100
௞௧

ଵା௞௧

௙

௙ାଵ଴
   (3) 

𝑔ሺ𝑐,𝑘, 𝑡,𝑓ሻ ൌ  𝑐 ቂ1൅ ቀ1െ
௖

ସଶ.ଶ
ቁ ቀ1െ

ୣ୶୮ሺି௞௧ ଵ଴⁄ ሻ

ଵ ା ୣ୶୮ሺସ ି ଴.଴ସ௙ሻ
ቁቃ  (4) 

where c is the feedstock composition (i.e., feed grade) in 
percentage, k is the flotation rate constant in min−1 (set to 
1), t is the flotation time in minutes, and f is the air flow 
rate in L/hr. 

The exact equations are mostly arbitrary, with num-
bers that very roughly correspond to phosphate flotation. 
The grade equation, in particular, is set up to refer to P2O5 
grade. They are designed to highlight the tradeoffs present 
in flotation cells in a simple fashion, as can be seen in the 
plots of this simple kinetic model in Figs. 6a and 7a. 
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Although we are aware of much more sophisticated mod-
els, we intentionally choose a simplistic model of flotation 
to more clearly demonstrate and display the features of a 
POMDP approach. 

We do not expect our simple kinetic model to accu-
rately capture flotation dynamics, but rather to serve as a 
reasonable first guess or prior. We can capture all inaccu-
racies in our model, as well as any inaccuracies in any 
measurement of the true grade and recovery in an error 
function. Then, we can represent the true grade or recov-
ery as the sum of the kinetic model and some stochastic 
error function, as depicted in Fig. 6 and 7. The true grade 
and recovery result in a true reward function as well, 
shown in Fig. 8. 

For the synthetic cases in this paper, the “true” error 
function is generated stochastically to produce a ground 
truth grade and recovery that represent “reality”. Just like 
in real life, this ground truth is unknown to the intelligent 
agent seeking to optimize the flotation cell, but can be ex-
plored through measurements.  

5. Belief update 

As introduced in Section 2.3, the intelligent agent up-
dates the belief to learn the true grade and recovery and 
improve upon our prior model of the system. In the flota-
tion problem, the belief is represented by:  

• Gaussian process of feedstock composition 

• Gaussian processes of the grade and recovery error 
functions 

Uncertainty is represented stochastically with Gauss-
ian processes. Actions (i.e., setting the air flow rate and 
flotation time) are chosen at each point in time as the feed-
stock composition fluctuates. The measured grade and 
recovery then inform the updated belief (examples shown 
in Fig. 9), which helps improve decision-making. The 
Gaussian processes in the belief are updated by sequen-
tially refitting them to include the new data. 

   

(a) Kinetic model (b) Error function (c) True grade 

Fig. 6. An example of the grade (%) as a function of the actions (air flow rate and flotation time) at a 
fixed feedstock composition. 

   
(a) Kinetic model (b) Error function (c) True recovery 

Fig. 7. An example of the recovery (%) as a function of actions (air flow rate and flotation time) at a fixed 
feedstock composition. 

  

(a) Kinetic model (b) True reward 

Fig. 8. Examples of the reward (NPV) as a function of actions (air flow rate and flotation time) at a 
fixed feedstock composition. 
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(a) Grade belief (%) (b) Recovery belief (%) (c) Reward belief (NPV) 

Fig. 9. Beliefs represented by Gaussian processes that are progressively updated as new data is collected 
over time. Black dots represent collected data.

6. Simulation setup 

We investigate the extent to which the performance 
of different approaches is affected by feedstock (i.e, state) 
and process (i.e., model) uncertainty. We do so by running 
simulations of 100 timesteps, which represent 100 flota-
tion batches processed over one year. All simulations were 
run on a 13th Gen Intel Core i9 using Windows 11.  

6.1. Establishing the baseline 

In a POMDP framework, a given approach to choos-
ing actions based on the current belief is called a policy. 
Control and optimization algorithms can be considered 
types of policies. As stated in Section 1, two commonly 
used deterministic methods, PID and MPC, are used as a 
frame of reference. Although MPC is typically used as a 
control method, we implement MPC using an optimiza-
tion approach with the goal of maximizing the reward, not 
just the grade and recovery, to serve as a direct compari-
son to the POMDP approach. Here, MPC uses the simple 
kinetic model (prior) as a fixed model throughout the sim-
ulation, unless otherwise stated.  

6.2. Performance metric 

Since we are aiming for the goal of process optimiza-
tion, the reward (proxy for NPV, established in Section 
3.6) is used as the metric of comparison.  

6.3. POMDP solver 

To solve the problem we have now formulated as a 
POMDP, we use a well-established online solver called 
Partially Observable Monte Carlo Planning (POMCP) 
(Silver and Veness, 2010). To determine a policy, 
POMCP uses Monte Carlo tree search (MCTS), a com-
mon algorithm for deciding a course of action from many 

possible futures. The most well-known application of 
MCTS is in gameplaying AI. 

POMCP requires a discrete action space, so the flota-
tion time is discretized with a step size of 0.5, and the air 
flow rate is discretized with a step size of 5.0. These val-
ues reflect the approximate sensitivity of equipment in 
laboratory and industrial applications, and there is limited 
practical use in varying the flotation time by less than 30 
seconds and the air flow rate by less than 5 L/hr. However, 
we do explore the impact of the action space sizing on the 
performance of POMCP in Appendix D Table D1.  

For applications to continuous action spaces and 
more expansive state and action spaces in general, we rec-
ommend the use of POMCPOW, which has been well-
established to address large state and action spaces (Sun-
berg and Kochenderfer, 2018).  

7. Demonstration of optimization-under-uncertainty 
approach  

7.1. Optimization under model uncertainty 

To evaluate optimization under model uncertainty, 
we consider three cases of differing degrees of model un-
certainty: where the simple flotation model has high, 
medium, and low accuracy. The model accuracy reflects 
how closely the kinetic model matches reality. Examples 
are plotted in Fig. 10.  

The median results (over 100 simulations) in Table 1 
show that although MPC performs better than the POMDP 
approach when the model is accurate, its performance lags 
behind the POMDP approach as the model accuracy de-
creases. Table A1. shows that in the low accuracy scenario, 
there are even cases where MPC performs worse than a 
PID controller. 

    

(a) Kinetic model (b) High accuracy (c) Medium accuracy (d) Low accuracy 

Fig. 10. Reward functions (NPV) of varying degrees of similarity to the kinetic model.  

 



  https://doi.org/10.46690/serc.2025.02.07 

Sustain. Earth Resour. Commun. 2025, 1(2): 100-112  107 

Table 1. Median performance of MPC and POMDP approaches relative to PID controller baseline when varying model 
accuracy (i.e., increasing model uncertainty). 

Model accuracy Model predictive control POMDP approach 

High Med Low High Med Low 

rel. recovery [∆%] -3.6 -3.8 -4.3 -3.1 -3.3 -3.1 

rel. grade [∆%] +0.4 +0.5 +0.9 +0.4 +0.7 +1.9 

rel. reward [∆$M/yr] +119 +126 +126 +95 +129 +283 

7.1.1. Effect of feedstock variability 

Now, we consider the effect of feedstock variability 
on optimization under model uncertainty when the feed-
stock is fully known (i.e., measured at every timestep). We 
test different variances of the feedstock composition un-
der a set of grade and recovery surfaces for which, when 
the feedstock composition is constant, MPC and the 
POMDP approach have near-equivalent performance. 
This corresponds roughly to the medium model accuracy 
case (see Fig. 10). (A log variance of -3 can be considered 
near-constant feedstock, as can be seen in the plots of sam-
ple feedstock composition signals in Appendix B Fig. B1.) 

As can be seen in Fig. 11, as the feedstock variance 
increases, the relative reward of the POMDP approach in-
creases. Detailed results (shown in Table C1) indicate that 
decreasing the feedstock composition correlation length 
also seems to lead to an increase in the relative reward of 
the POMDP approach. However, this only occurs at high 
variance, and the effect is less pronounced. 

 
Fig. 11. Median reward of POMDP approach relative to 
MPC. Error bars represent 20th and 80th percentiles. Log 
correlation length is fixed at 2. 

7.2. Optimization under state uncertainty  

Next, we consider the independent effect of state (i.e., 
feedstock) uncertainty. We fix the grade and recovery sur-
faces and choose a high-variance feedstock composition 
signal. Then, the number of feedstock measurements 
across the simulation is varied. Taking fewer measure-
ments corresponds to higher state uncertainty. A high, 
medium, and low model accuracy scenario is considered.  

As shown in Fig. 12, for a high variability feedstock, 
the POMDP approach improves at a faster rate than MPC 
as the number of measurements (i.e., information gathered) 
increases. The POMDP approach is never able to outper-
form MPC at high model accuracy (consistent with the 
results in Section 7.1), nor in any case with zero measure-
ments. However, after a certain number of measurements 
in the medium and low accuracy cases, the POMDP ap-
proach is able to surpass MPC. For the medium accuracy 

case, crossover occurs at n = 30, and for the low accuracy 
case, crossover occurs at n = 3 (where n = number of 
measurements). 

 

(a) High model accuracy 

 

(b) Medium model accuracy 

 

(c) Low model accuracy 

Fig. 12. Performance of MPC and POMDP ap-
proaches for a high-variance feedstock 
composition signal and three fixed grade and re-
covery surfaces, varying the number of 
measurements. Lines are exponential curves of 
best fit. 

7.3. Uncertainty reduction 

Finally, we analyze the capacity of different ap-
proaches to reduce uncertainty. To put MPC and the 
POMDP approach on even footing, MPC is given the 
same learning capacity as the POMDP approach. In other 
words, an adaptive MPC approach is implemented, where 
the same Gaussian processes used to form the belief of the 
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POMDP are used to update the model that the adaptive 
MPC approach uses. We now conduct the same test as in 
Section 7.2, for another set of fixed grade and recovery 
surfaces with medium model accuracy and high-variance 
feedstock composition.  

As shown in Fig. 13, adaptive MPC does not perform 
significantly better than MPC, even in a scenario where 
the POMDP approach surpasses MPC. Fig. 14 shows the 
Gaussian process models of the system at the end of the 
simulation when measurements are always taken. Points 
represent samples taken over the simulation. Fewer points 
shown indicate more repeated sampling. Evidently, adap-
tive MPC explores a much smaller space than the POMDP 
approach. 

 

Fig. 13. Performance of MPC, POMDP, and adaptive 
MPC for a medium model accuracy and high-variance 
feedstock compositional signal case, varying the number 
of measurements. Lines are curves of best fit. Since the 
data for adaptive MPC is noisy, a linear rather than expo-
nential fit is used. 

   

(a) True reward (b) Adaptive MPC (c) POMDP approach 

Fig. 14. Comparison of the Gaussian process predictions for the reward function (NPV) with the true reward func-
tion. Adaptive MPC exhibits more repeated sampling, while the POMDP approach explores more and achieves a 
more accurate process model.

8. Discussion 

8.1. Analysis of results 

The test cases presented reveal that an optimization-
under-uncertainty approach using a POMDP framework 
is more successful at handling cases of significant model 
uncertainty, adjusting to significant feedstock variability 
under model uncertainty, and utilizing limited information 
under state (i.e., feedstock) uncertainty.  

In Section 7.1, we see that for MPC, a high-quality 
deterministic optimization algorithm whose performance 
depends heavily on the quality of the model (i.e., having 
an accurate picture of the system), performance correlates 
strongly with the accuracy of the model. In the high accu-
racy case, the predicted optimal region largely overlaps 
with the actual optimal region, so using the kinetic model 
suffices to inform optimal decision-making. As a result, 
MPC is not only sufficient, but it outperforms the POMDP 
approach.  

But as soon as the model deviates from reality, MPC 
struggles, while a POMDP approach consistently per-
forms well, even when the flotation model has low 
accuracy. In the medium accuracy case, there is some 
overlap in optimal regions, but there is now a new optimal 
region that is not captured by the kinetic model. In the low 
accuracy case, there is almost no overlap in optimal re-
gions, so relying on the kinetic model would result in 
suboptimal decision-making.  

(Note that both MPC and the POMDP approach con-
sistently find solutions that result in worse recoveries but 
better grades than the PID controller. This is because these 
two approaches are both seeking to optimize the reward, 
which takes into account operating costs, while the PID 
controller just seeks to maintain a high grade and recovery 
setpoint regardless of other factors.)  

Even with relatively high model accuracy, small in-
accuracies in the model can compound when the feedstock 
has high variability, as shown in Section 7.1.1. The 
POMDP approach is able to adjust and better account for 
feedstock variability by developing a more accurate model 
over time. These results imply that, in this case, having 
more accurate information about the process model is 
more important than having perfect information about the 
feedstock in optimizing performance—in other words, 
model uncertainty matters more than feedstock uncer-
tainty.  

The importance of model uncertainty over feedstock 
uncertainty is further supported by the results in Section 
7.2. The POMDP approach almost always achieves a 
greater reward than MPC in the low model accuracy case, 
while the opposite is true in the high model accuracy case, 
regardless of the level of feedstock uncertainty. If feed-
stock uncertainty had a greater influence on performance, 
we would expect to see a crossover of the curves for all 
depicted model accuracies. However, feedstock uncer-
tainty is still relevant, which is particularly clear in the 
medium model accuracy case (see Fig. 12b). The greater 
rate of improvement for the POMDP approach as the 
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number of measurements increases indicates that it can 
translate additional feedstock information into a greater 
reward increase than MPC can. In other words, a POMDP 
approach “learns” faster than MPC as more data is ac-
quired.  

The faster learning rate of the POMDP approach, 
thanks to its explicit integration of uncertainty reduction 
into the optimization (balancing exploration with exploi-
tation), is especially evident in the results shown in 
Section 7.3. Figs. 13 & 14 together clearly demonstrate 
that although adaptive MPC is able to learn a more accu-
rate process model over time, its capacity to balance 
exploration with exploitation is limited, hindering its per-
formance in the long run.  

8.2. Summary of POMDP advantages  

The advantages of the POMDP approach are best 
summarized by comparing it to existing approaches in or-
der of complexity, and highlighting how it incorporates 
more holistic and forward-looking features. 

1. Direct search (or other deterministic approach) vs. 
POMDP: POMDP performs global optimization in time, 
not one-shot optimization.  

2. Adaptive MPC vs. POMDP: POMDP looks at 
longer horizons and performs stochastic optimization.  

3. Robust optimization (probabilities encoded in con-
straints, or any other stochastic optimization approach) vs. 
POMDP: POMDP incorporates exploration for uncer-
tainty reduction to inform future decision-making.  

Even though robust/stochastic optimization ap-
proaches do consider uncertainty, they do not explicitly 
contain a mechanism to reduce uncertainty over time. So, 
although a comparison to a robust/stochastic optimization 
approach is not presented here, Section 7.3 still demon-
strates the inherent capability of a POMDP approach to 
perform uncertainty reduction, which improves perfor-
mance in the long run.  

8.3. Implications for real systems  

These results emphasize the power of the POMDP in 
handling applications with high degrees of uncertainty, es-
pecially when the model of the system (i.e., the 
description of process dynamics) has low accuracy. Note 
that although these results are for simple test cases, we 
would expect that in more complex, real systems, there 
would be significant model uncertainty, which a POMDP 
approach is better equipped to handle than deterministic 
optimization. This approach has immediate relevance for 
potential application in improving the design-of-experi-
ments of bench-scale flotation cells as well as in 
optimizing the operation of industrial-scale flotation cells 
without the need for any retrofitting. And although we use 
the example of a flotation cell in this work, the framework 
can be adapted to any process unit, or scaled up for opti-
mization of a flotation circuit, an entire mineral processing 
circuit, an integrated mine and processing plant, and even 
an entire vertical mineral supply chain. 

Beyond improving existing operations, using a 
POMDP approach could aid in the design and optimiza-
tion of versatile, highly adaptable mineral processing 
plants that were previously not possible due to feedstock 

variability and process complexity. Such a processing 
plant could even obviate the need for blending, as it could 
adjust operational settings for a wide range of possible 
feedstocks.  

Lastly, the use of a solver based on Monte Carlo tree 
search ensures that the optimization decisions it makes are 
interpretable. The goal is to aid mineral processing experts 
in making decisions, rather than to take over decision-
making with AI altogether. 

9. Conclusions 

We have demonstrated that mineral processing can be 
framed as a problem of optimization-under-uncertainty, 
presenting a mathematical formulation of a simplified flo-
tation cell using the POMDP framework. A range of 
synthetic test cases demonstrates the utility of the POMDP 
approach compared to deterministic approaches like MPC, 
especially in cases with significant feedstock (i.e., state) 
and process (i.e., model) uncertainty. Through belief up-
dating, the POMDP formulation is designed to incorporate 
both feedstock (i.e., state) and process (i.e., model) uncer-
tainty when performing optimization, which enables it to 
handle conditions of significant uncertainty more readily 
than deterministic methods such as MPC. Thus, an opti-
mization-under-uncertainty approach is particularly well-
suited for optimizing mineral processing.  

Our work has presented the following advancements:  

1. Mineral processing can be framed as a problem of 
optimization-under-uncertainty, as demonstrated by our 
mathematical formulation of a simplified flotation cell.  

2. Framing the ultimate goal as optimization, rather 
than control, is better suited to handling uncertainty in 
mineral processing. MPC’s performance over PID alone 
emphasizes this.  

3. The representation of an unknown state and model 
via a belief, and the integration of real-time data collection 
into process optimization via belief updating, is funda-
mental to how a POMDP approach models uncertainty 
and the reduction of uncertainty over time. In other words, 
an intelligent agent learns a more accurate model of pro-
cess dynamics and estimation of feedstock variability over 
time to improve process optimization. 

4. Synthetic test cases confirm that in scenarios with 
significant feedstock (i.e., state) and process (i.e., model) 
uncertainty, a POMDP approach performs better than de-
terministic approaches like MPC.  

Future work is needed to apply this approach to real-
world test cases. The nearest-term application could be for 
the design of experiments of bench-scale flotation. The 
formulation and code as presented in this paper could be 
directly applied, along with a few tweaks to add complex-
ity, such as a more specific, well-developed flotation 
model, the inclusion of feedstock characteristics beyond 
an average composition, a larger set of control parameters, 
and a more case-specific reward function. Similarly, this 
work could be readily applied to optimizing the operation 
of an industrial-scale flotation cell, with similar tweaks, as 
well as swapping out flotation time for feed rate to con-
sider a continuous flotation process. The more fruitful 
application would be in the design and operation of 



  https://doi.org/10.46690/serc.2025.02.07 

Sustain. Earth Resour. Commun. 2025, 1(2): 100-112  110 

mineral processing circuits, which could apply the same 
approach, but would require the development of a new 
mathematical formulation. We hope that this will inspire 
future work to improve the efficiency and sustainability of 
industrial-scale mineral processing facilities. 
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Appendix A 

Detailed results of the relative reward for the low accuracy case described in Section 7 are presented in Table A1. 
The p50 (median) values are the same as the values presented in Table 1. 

Table A1. Comparison of reward between different control and optimization approaches. 

Policy 
Relative Reward (∆$M/yr) 

p20 p50 p80 

PID Controller (Baseline) - - - 

Model Predictive Control (MPC) -14 +126 +258 

Online Solver (DMU approach) +188 +283 +381 

 

   



  https://doi.org/10.46690/serc.2025.02.07 

Sustain. Earth Resour. Commun. 2025, 1(2): 100-112  111 

Appendix B 

Fig. B1. Five example feedstock compositions over time with different variances and correlation lengths. The log 
variance increases from -3 to 0 from top to bottom, and the log correlation length decreases from 4 to 0 from 
left to right. The specific curves are not important; the intent is to show the change in the shape of the curves.

 

Appendix C 

Detailed Results for Feedstock Variability (Detailed results for Section 7.1.1): 

Table C1. Reward of POMDP approach relative to MPC (in ∆$M/yr) when varying feedstock composition correla-
tion length and variance. 

Log Feedstock Composition Log Variance 

Corr. -3.0 -2.0 -1.0 0.0 

Len. p20 p50 p80 p20 p50 p80 p20 p50 p80 p20 p50 p80 

4.0 -6.0 0.1 5.4 -5.8 -1.3 5.5 -3.5 0.8 6.5 -2.5 1.6 9.8 

3.0 -3.8 -0.2 3.7 -3.7 0.3 2.9 -2.3 1.2 4.5 -1.7 3.0 9.5 

2.0 -2.1 -0.2 2.7 -2.4 -0.2 2.8 -0.8 1.4 3.6 -0.1 3.5 7.8 

1.0 -2.0 0.1 1.8 -2.5 -0.0 1.6 -0.3 1.5 3.9 0.9 4.4 6.6 

0.0 -1.4 0.2 1.9 -1.5 0.1 1.2 0.0 1.7 3.1 1.3 3.8 5.6 

Appendix D 

The size and granularity of the action space (i.e., con-
trol parameters) affect the results, since a larger action 
space cannot be explored as efficiently by a Monte Carlo 
tree search algorithm. In this paper, we use an action grid 
spacing of [0.5, 5.0] (i.e, consider flotation times with step 
size 0.5 minutes and air flow rates with step size 5.0 L/hr) 
for all results, since it best reflects the most fine-grained 
control settings that are still realistic. Additional testing in 
Table D1 shows that for larger action spaces (i.e., smaller 
step sizes), more model uncertainty is necessary for the 
POMDP approach to perform better than MPC. 

Table D1. Reward of POMDP approach relative to 
MPC (in ∆$M/yr) when varying action space granularity 
at different levels of grade and recovery error variance. 

Action space Grade and recovery log variance 

Step size -3.0 -2.0 -1.0 0.0 

[0.1, 1.0]   -9 +94 

[0.25, 2.5] -14 -4 +21 +127 

[0.5, 5.0] -5 +9 +78  
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